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Dispersal is essential to the plethora of motile microorganisms living in porous environments, yet how it
relates to movement patterns and pore space structure remains largely unknown. Here we investigate
numerically the long-time dispersal of a run-and-tumble microorganism that remains trapped at solid
surfaces and escapes from them by tumbling. We find that dispersal and mean run time are connected by a
universal relation, that applies for a variety of porous microstructures and swimming strategies. We explain
how this generic dependence originates in the invariance of the mean free path with respect to the
movement pattern, and we discuss the optimal strategy that maximizes dispersal. Finally, we extend our
approach to microorganisms moving along the surface. Our results provide a general framework to quantify
dispersal that works across the vast diversity of movement patterns and porous media.
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Among the 1030 prokaryotes that populate the Earth, a
majority live in oceanic and terrestrial subsurfaces, made of
sediments, soil, or rocks [1,2]. With myriad of bacteria also
inhabiting higher organisms [3], porous media is a wide-
spread habitat for microbial life [4,5]. The strategies
microorganisms adopt to navigate their environment impact
their ability to access resources [6], invade new areas [7,8],
and ultimately contribute to determine their survival [9].
Therefore, establishing how navigation strategies regulate
dispersal in relation to the physical environment is key to
understand the ecological success of many species of
bacteria. Additionally, predicting bacterial dispersal is
important because it plays a crucial role in infections [10],
food contamination by pathogens [11], targeted drug-
delivery in tumors [12], rhizosphere enhancement for
plant growth [13], and the bioremediation of porous
aquifers [14].
Understanding the dispersal of motile microorganisms

poses at least two challenges. The first is the existence of a
vast parameter space. Bacteria generally swim in random
walks where nearly straight runs are punctuated by reor-
ientation events, which exist in several types and define a
repertoire of swimming strategies [15–19]. The diversity of
porous microstructures, from rocks to tissues and body
gels, is no less daunting, with pores widely varying in
morphology and spanning micrometers to millimeters in
size [4]. In spite of a recent surge of research on both non-
tumbling [20–23] and tumbling microorganisms [24–33],
most of the parameter space remains unexplored. The

second challenge is that little generic finding has emerged.
The one exception is the existence, across different sys-
tems, of an optimal persistence time at which dispersal is
maximal [25,27–30,32,34], yet there is no overarching
principle to predict this maximum. In this context, an
intriguing proposition put forward by Mattingly [35,36] is
that the microstructure can be “largely forgotten,” in the
sense that only a small set of features is relevant. How
general this finding is, however, remains unknown, because
it was reached for a specific microstructure and swimming
strategy. Overall, it is unclear how knowledge gained in
idealized porous media mostly used to date—typically
arrangements of spheres or disks—can be transferred to the
great diversity of microstructures found in the natural
world.
In this work, we show that the dispersal of motile

microorganisms in porous media has a universal character.

FIG. 1. Model of run-and-tumble microorganism in a porous
medium (see text for parameter definition). After a collision with
the surface, the microorganism escapes by tumbling, with a
direction randomly sampled in the available half-space (orange
rays in the inset).
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We study a run-and-tumble microorganism, which stops
moving upon encountering a solid surface but can escape
from it by tumbling. We find numerically that, across
diverse microstructures and swimming strategies, the dis-
persal is related to the mean run time by a universal
dependence, that we derive in an analytical model. We
explain why one can forget almost everything about the
porous medium when predicting the microorganism dif-
fusivity. The key insight is the invariance of the mean free
path [37,38]. As a result, what matters for dispersal is only
the ratio between the accessible volume and the amount of
interface. Besides, we show that the dispersal law is also
relevant for microorganisms moving along surfaces. Our
results demonstrates that, despite the diversity of porous
structures and motion patterns in natural systems, dispersal
can be understood within a common and remarkably simple
framework.
We consider a run-and-tumble (RT) microorganism

moving in a porous medium (Fig. 1). It has velocity vo, is
subject to rotational diffusion with coefficient Dr, and
tumbles with rate τ−1, with a distribution of reorientation
angles that is nonchiral but otherwise arbitrary. The model
includes as particular cases two swimming strategies: run-
reverse (RR), where reorientation events involve perfect
reversal of swimming direction, and RT with isotropic
reorientation (RTi). We assume the simplest behavior at
the surface [39]: the microorganism has vanishing velocity

there, but at each tumble, it can escapewith a probability η−1

and a direction uniformly distributed in the free half-space
(Fig. 1 inset). Dispersal is characterized by the diffusivity
D ¼ limt→∞ MðtÞ=2dt, with MðtÞ the mean-square dis-
placement at time t and d the space dimension. We
performed agent-based simulations [40] to determine the
diffusivity as a function of the mean run time τ in diffe-
rent porous environments, both ordered and disordered
[Fig. 2(a)]. We found that, for all environments and swim-
ming strategies tested, there is an optimal run time τ� for
which the diffusivity D reaches a maximum [Fig. 2(b)].
Moreover, when rescaled by the diffusivity maximum D�
and by the optimal mean run time τ�, all the data collapse
onto amaster curve.We now explain this universal behavior.
Minimal model of diffusivity and Cauchy universality—

We propose a simple model of microbial dispersal in a
porous medium, whose main approximation is to discard
the complex correlations between microorganism trajectory
and microstructure. Specifically, we assume that encounters
with solid surfaces occur along the trajectory as a
Poissonian process with rate T −1 and can therefore be
treated as a second type of tumble [33]. We then derive the
diffusivity of the microorganism as [41]

D ¼ T
T þ τs

v2o=d

D0
r þ ᾱτ−1 þ β̄T −1 Kðφ̄Þ: ð1Þ

FIG. 2. Diffusivity of a run-and-tumble microorganism in porous media. (a) Simulated motion within different microstructures:
ordered disks (Circle), disordered polydisperse disks (Diamond), ordered rectangles (Square), and disordered rods (Triangle), with solid
fractions φ̄ ¼ 1 − φ ¼ 0.25, 0.3, 0.24, and 0.13 respectively. (b) Diffusivity as a function of the mean run time for four systems. The
timescale tu depends on the microstructure [41]. (c) Diffusivity curves rescaled by the value and time of their maximum. Gray points
show additional data, detailed in Table I of the Supplemental Material [41], including different microstructures, swimming strategies,
rotational diffusivities, solid fractions between 0.01 and 0.5, and a model with partial trapping. (d) The modified diffusivity ratioR for
all investigated models collapses on a universal curve (black line), defined by Eq. (5). The legend applies across panels (b)–(f). Here
Dr ¼ 0.1t−1u . (e),(f) Comparison between simulations (y axis) and theory (x axis) for (e) the maximum diffusivityD� and (f) the optimal
mean run time τ�.
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Here, τs ¼ ητ is the mean time spent at the surface after
an encounter, D0

r ≡ ðd − 1ÞDr, ᾱ≡ 1 − α, β̄≡ 1 − β, and
φ̄≡ 1 − φ. α≡ hcos θti is the mean cosine of the reorien-
tation angle θt—henceforth called “correlation” for short—
induced by a tumble [47], and β is similarly the “correlation”
of reorientation induced by an encounter with the surface.
Kðφ̄Þ is a correction factor that depends on the porosity φ
and the microstructure. Each of the three factors in Eq. (1)
encapsulates one physical effect governing dispersal. The
first factor is the fraction ν of time spentmoving. The second
factor captures the three independent processes—rotational
diffusion, tumbles, and surface encounters—responsible for
orientational decorrelation,whose rates are additive. Finally,
the third factor accounts for the excluded volume and
correlation of the microstructure. Kðφ̄Þ is chosen so that
the diffusivity is correct in the limit of Brownianmotion [48];
Kðφ̄Þ is known in several microstructures [42,49,50] and, at
low solid fraction φ̄,Kðφ̄Þ¼1−φ̄=ðd−1ÞþOðφ̄2Þ holds for
arbitrarymaterial [41]. To complete themodel, one thenneeds
only to specify the mean time T between two surface
encounters.
The surface encounter time T has a surprisingly simple

expression. Since velocity is constant in modulus, voT is
the mean free path hLi, defined as the trajectory length
between two successive contacts with the surface. The
mean free path possesses an invariance property, also called
Cauchy universality [51], which states that it is equal to the
mean chord length lc of the medium, giving

voT ¼ hLi ¼ lc ¼ σd
Ω
∂Ω

¼ σd
φ

S
; ð2Þ

with σd ¼ π and 4 for d ¼ 2 and 3, respectively, Ω the
volume of porous space, ∂Ω the amount of solid interface,
and S the specific surface of the material. First written for
ballistic motion [50,52,53], Eq. (2) actually holds true in
more general conditions [51,54], that are still under inves-
tigation [55], but include random motion with reorientation
events that may be anisotropic, inhomogeneous, or even
non-Poissonian [37,38,56]. Cauchy universality is thus
applicable to our generic run-and-tumble motion.
Diffusivity master curve and maximum—Knowing that

the encounter time T is a purely geometric quantity
independent of the mean run time τ, Eq. (1) gives

D
D� ¼

ð2þ cÞξ
1þ cξþ ξ2

; ξ≡ τ

τ�
; ð3Þ

where ξ is a rescaled mean run time. The diffusivity reaches
a maximum D� at the mean run time τ�, with

D� ¼
ffiffiffiffiffiffi

ab
p

Kðφ̄Þ=ð2þ cÞᾱd; τ� ¼
ffiffiffiffiffiffi

ab
p

; ð4Þ

and a≡ T =η, b≡ ᾱ=ðDr þ β̄=T Þ, and c≡ ðaþ bÞ= ffiffiffiffiffiffi

ab
p

.
The dependence of D=D� on c can be entirely accounted

for by introducing the modified diffusivity ratio

R≡ 4

�

2 − cþ ð2þ cÞD
�

D

�

−1
¼ 4ξ

ð1þ ξÞ2 ; ð5Þ

which is a function of ξ only. For the 38 parameter
combinations tested, that differ in swimming strategy, rota-
tional diffusion, porosity, or morphology of the medium, the
diffusivity values from simulations collapse [57], without
any free parameter, on the master curve RðξÞ from Eq. (5)
[Fig. 2(d)]. Additionally, the simulation results forD� and τ�
also align closely with the theoretical predictions from
Eq. (4) [Figs. 2(e) and 2(f)].
The diffusivity maximum occurs because diffusi-

vity increases as D ∼ τ for short runs and decreases as
D ∼ ðητÞ−1 for long runs, since then most time is spent at
the surface waiting to escape. The optimal mean run time
exhibits two regimes. When rotational diffusion is strong
(DrT ≫ 1), τ� ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ᾱT=Drη
p

is the harmonic mean between
the surface encounter time and the rotational diffusion time,
a trade-off between the two processes driving the orienta-
tion decorrelation. When rotational diffusion is negligible

(DrT ≪ 1), τ� ≃ T
ffiffiffiffiffiffiffiffiffiffi

ᾱ=ηβ̄
p

is controlled by the surface
encounter time. Here, the optimal mean run length voτ� is
dictated by the mean free path lc ¼ voT , since it realizes
the best compromise between efficient transport in porous
space and the penalty of being blocked at the surface.
Multimodal motion and surface sliding—In addition to

trapping at the wall studied so far (and extended to partial
trapping in the Supplemental Material [41]), a relevant class
of surface behaviors involves sliding, wherein a micro-
organism encountering the solid moves with velocity vo
along the surface. Motion then becomes multimodal. To
understand the implications, we first investigate the diffusi-
vity of a bimodal process where two modes m ¼ 1 and 2
alternate. Mode m is characterized by a Liouvillian Lm,
which governs the Fokker-Planck equation ∂tpm ¼ Lmpm
for the distribution pmðθ; tÞ of the angle θ describing the
microorganism orientation (we took d ¼ 2 for simplicity).
In particular, motion that includes rotational diffusion and
tumbles with rate τ−1m and a turning angle distribution hm
yields Lm ¼ Dr;m∂θθ − τ−1m ð1 − hm ⊗Þ, where ⊗ denotes
convolution. A transition from mode m to m0 occurs at
rate μm and induces a reorientation specified by the
distribution of turning angle hm with correlation βm.
Using an exact formalism based on Fourier and Laplace

transforms [41], the diffusivity of a bimodal process is

D ¼ ν1D1ðμ1; βe1Þ þ ν2D2ðμ2; βe2Þ þ ðβ1 þ β2ÞC: ð6Þ

Here, νm ¼ τm=ðτm þ τm0 Þ is the fraction of time spent in
mode m. Dmðμ;βÞ≡1

2

P

l¼�1½−LmðlÞþμmβ̄�−1, with LmðlÞ
the Fourier series of LmðθÞ, is the diffusivity for a process
involving motion in mode m, but interrupted with rate μ by
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reorientation events of correlation β. The effective corre-
lation βem ≡ ðβ1β2=2Þ

P

l¼�1½1 − Lm0 ðlÞ=μm0 �−1 character-
izes the reorientation occurring between an escape from
mode m and a return to mode m. The correction C is given
by C−1 ≡ ðμ1 þ μ2Þð½μ1μ2D1ð0ÞD2ð0Þ�−1 − β1β2Þ where
Dmð0Þ≡Dmð0; :Þ is the diffusivity in pure mode m. The
first two terms in Eq. (6) are the weighted averages of
interrupted unimodal diffusivities, because each mode m is
interrupted with rate μm by the other, and these interrup-
tions induce a reorientation with effective correlation βem.
Yet, Eq. (6) also includes an additional correction term
whenever some degree of correlation is retained, on ave-
rage, when switching the mode (β1 þ β2 ≠ 0).
As a specific case coupling bulk and surface motion, we

consider a square lattice of disks and assume that tumbles at
the surface can induce either escapes or reversals along the
surface. Since sliding around obstacles can be clockwise or
counterclockwise, the process is now trimodal [Fig. 3(a)].
The formalism can be extended [41] and yields a formula
analogous to Eq. (6). The predicted diffusivity is in
agreement with simulation data [Fig. 3(b)]. At high solid
fraction φ̄, the maximum D� vanishes in case of wall
trapping, whereas for sliding it can display nonmonotonic
behavior or reach a plateau [Fig. 3(c)], where displacement
becomes surface dominated. The optimal run times with
sliding and trapping remain comparable up to φ̄ ≃ 0.4,
which suggests that environments with distinct surface
properties may nevertheless lead to similar optimal
strategies.
Finally, we show that the universal law of dispersal is

also relevant to multimodal motions. Because analytical
approaches become too complex, we resort to numerical
simulations to explore several variations in surface

behaviors and environments. These include sliding on
disks without surface reversals, sliding on rectangles with
reversals at corners, as well as monodisperse ordered disks
and several types of polydisperse disordered disks. Taking
c as a free parameter in Eq. (5), all scenarios considered
lead to a collapse on the master curveRðξÞ [Fig. 3(e)]. This
indicates that the law of dispersal, demonstrated above for
trapping at surfaces, also extends to a variety of surface
behaviors that involve sliding.
In spite of its apparent broad applicability, the law of

dispersal is not without exception. Finding a generic
criterium for failure is a challenge, but one requirement
is indicated by the following counterexample. Assume a
microorganism that moves amid ordered rectangular
obstacles, slides along surfaces, and escapes at every corner
with direction unchanged. Because motion is essentially
ballistic and tumbles are not any more needed for escape,
dispersal is highest for τ → ∞, and there is no maximum at
finite run time. One necessary condition for collapse is thus
the existence of a trade-off that penalizes both short and
long run times.
Discussion—Though applied to a RT microorganism, the

model is applicable to nontumbling motion. For an active
Brownian particle (ABP) with vanishing surface velocity
and which escapes by rotational diffusion [58], Eq. (3) for
diffusivity still holds, with ξ ¼ τp=τp� and τp ≡ 1=D0

r the
persistence time [41]. For all natural porous environments
where surface trapping is a good approximation, such as
rocks, soils, gels, and tissues [26,59], all having irregular
boundaries, the diffusivity given by Eqs. (3)–(5) is remark-
ably generic. To predict long-time dispersal, most proper-
ties of the microstructure [50] are irrelevant: only the mean
chord length matters.

FIG. 3. Run-and-tumble with sliding along surface. (a) The porous medium consists of disks on a square lattice with spacing W. The
microorganism moves through porous space (mode 1) or along obstacle surfaces (modes 2 and 3). It aligns with walls upon collision and
when tumbling at the surface, escapes with probability 1=2 and reverses with probability 1=4. (b) Diffusivity as a function of mean run
time, comparing numerical data (points) and a model (solid line). Dashed lines show diffusivity without sliding. Time unit is tu ¼ W=vo.
(c),(d) Diffusity maximumD� and optimal mean run time τ� as a function of solid fraction, with and without surface sliding (continuous
and dashed lines respectively). Circles show simulation data. (e) The modified diffusivity ratios R for various solid fractions
(φ̄ ¼ 0.08–0.69) and swimming strategies collapse on the master curve, Eq. (5) (black line). Gray circles show additional data for sliding
without surface reversals, sliding on ordered rectangles, and sliding in disordered environments. The 37 datasets are detailed in Table II
of the Supplemental Material [41].
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The connection between dispersal and Cauchy univer-
sality sheds new light on some previous findings. The idea
of a generic dispersal in porous media was suggested by
Mattingly [35,36] from the study of a specific system [60].
His prediction, recovered as a particular case of Eq. (1), was
obtained by homogenization. Our derivation from a min-
imal model explains why the result is widely applicable.
Besides, for RT polymers in a disordered medium,
Ref. [27] concluded that the “size of the pores, not their
shape, matters” while for ABPs in a periodic medium,
Ref. [23] identified the “effective mean free path as the
critical length scale governing cell transport.” Both state-
ments follow from the Cauchy universality embodied in
Eq. (2). Finally, the reverse-when-stuck strategy was shown
numerically to outperform other swimming patterns [30].
Equation (1) allows one to generalize this conclusion. The
optimal pattern for an organism with surface sensing abi-
lity involves ballistic runs and escape immediately after
collision in a direction parallel—not normal—to the
surface [61].
To conclude, we found that the dispersal of motile

microorganisms within porous media is governed by a
generic law, whose universality originates in the invariance
of the mean free path [Eq. (2)]. Cauchy universality has
been shown to govern wave propagation through scattering
media [62,63] and residence time of bacteria in micro-
structures [64]. It also implies that, whatever the diversity
of motion patterns and porous media, microbial dispersal
can be understood within a unified framework. Future
research may assess the effect of non-Poissonian processes
for tumble and trapping [26,65], and characterize aniso-
tropic dispersal induced by external fields, flows [66], or
symmetry-breaking microstructures [67]. Finally, given the
analogy between random motions and polymer chains, one
may wonder about the implications of Cauchy invariance
for polymers in porous media and nanocomposites [68–70].
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