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Chemotaxis enables marine bacteria to increase encounters with phytoplankton cells
by reducing their search times, provided that bacteria detect noisy chemical gradients
around phytoplankton. Gradient detection depends on bacterial phenotypes and
phytoplankton size: large phytoplankton produce spatially extended but shallow
gradients, whereas small phytoplankton produce steeper but spatially more confined
gradients. To date, it has remained unclear how phytoplankton size and bacterial
swimming speed affect bacteria’s gradient detection ability and search times for
phytoplankton. Here, we compute an upper bound on the increase in bacterial
encounter rate with phytoplankton due to chemotaxis over random motility alone. We
find that chemotaxis can substantially decrease search times for small phytoplankton,
but this advantage is highly sensitive to variations in bacterial phenotypes or
phytoplankton leakage rates. By contrast, chemotaxis toward large phytoplankton cells
reduces the search time more modestly, but this benefit is more robust to variations in
search or environmental parameters. Applying our findings to marine phytoplankton
communities, we find that, in productive waters, chemotaxis toward phytoplankton
smaller than 2 μm provides little to no benefit, but can decrease average search times
for large phytoplankton (∼20 μm) from 2 wk to 2 d, an advantage that is robust to
variations and favors bacteria with higher swimming speeds. By contrast, in oligotrophic
waters, chemotaxis can reduce search times for picophytoplankton (∼1 μm) up to 10-
fold, from a week to half a day, but only for bacteria with low swimming speeds and
long sensory timescales. This asymmetry may promote the coexistence of diverse search
phenotypes in marine bacterial populations.

chemotaxis | encounter rates | bacteria–phytoplankton interactions | microbial ecology

Chemotaxis, the ability to navigate chemical gradients, is often used by marine bacteria to
navigate toward phytoplankton cells (1) and can be important for establishing symbiotic
relationships and favoring metabolic exchanges which lie at the heart of the oceans’ carbon
cycles (2, 3). In the water column, phytoplankton cells generate chemical gradients by
leaking dissolved organic compounds that can be strong attractants for bacteria (4, 5).
The region immediately surrounding a phytoplankton cell where organic compounds are
present in higher concentration, known as the phycosphere, acts as an ecological interface
for the interactions between phytoplankton and bacteria (6). The composition of marine
phytoplankton communities, which span more than two orders of magnitude in cell size
from ∼0.5 μm to hundreds of micrometers (7), exposes bacteria to gradients on a wide
range of lengthscales and amplitudes.

Swimming bacteria perform chemotaxis by sensing temporal changes in the concentra-
tion of chemoattractants and biasing their motility toward regions where chemoattractant
concentrations are higher (8–10). Because it is based on a molecule-counting process,
chemotaxis is inherently subject to noise (11, 12), especially at the low attractant
concentrations typical of marine environments (13). The limits that noise imposes
on chemosensing are well characterized for concentration fields with large spatial
extent (14), most similar in the ocean to those generated by large phytoplankton,
and for strong but short-lived pulses, representative for example of cell lysis events
in the sea (15, 16). By contrast, our understanding of bacterial chemotaxis toward small
phytoplankton cells, which generate sharp gradients tightly confined in space, is very
limited, despite the disproportionate abundance in the ocean of small compared to large
phytoplankton cells (17, 18). For instance, in a typical phytoplankton community in
oligotrophic waters, more than 95% of the population is in the size range between
0.5 and 3 μm, and considerably less than 1% of phytoplankton cells are larger than
10 μm. Historically, less attention has been reserved to chemotaxis toward small
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phytoplankton after a seminal computational study, though
based on parameters determined for the enteric bacterium
Escherichia coli, established that the gradients generated by
phytoplankton cells with radii smaller than 3 to 4 μm could
not be sensed by a swimming bacterium (19). This view has
been recently overturned by NanoSIMS experiments, which
revealed that chemotaxis confers an increased nutrient uptake to
the marine bacterium Marinobacter adhaerens in the presence of
the picocyanobacterium Synechococcus (20), demonstrating that
bacterial chemotaxis toward the smallest and most abundant
phytoplankton cells in the ocean is possible. Additionally, the
swimming speed of bacteria affects both the signal and the noise
in their measurement of chemical gradients (21) and spans more
than one order of magnitude (10 to 100 μms−1) in marine
bacteria (22–24). These results underscore the importance of
quantifying the impact of phytoplankton size and bacterial
swimming speed on bacterial chemotactic performance, which
we address in this study.

The Role of Phytoplankton Size in Chemotactic
Searches

Phytoplankton cells of different sizes generate chemical gradients
of different steepness and spatial extent, posing fundamentally
different gradient detection challenges for bacteria. Bacteria
experience chemical concentration fields in the form of temporal
sequences of molecular adsorption events, which they integrate
over a sensory timescale T to form an estimate of the local
concentration gradient (11). An intuitive understanding of the

problem can be obtained by comparing the adsorption sequences
experienced by a bacterium moving in the chemoattractant fields
generated by a large and a small phytoplankton cell (Fig. 1; see also
discussion in SI Appendix). When moving in the chemoattractant
field generated by a large phytoplankton cell, which is typically
characterized by a large spatial extent and a shallow gradient, a
bacterium will experience a large baseline adsorption rate with
only a modest increase over subsequent sensory windows T as
it nears the phytoplankton (Fig. 1 A and C ). Detection of such
gradients can fail if the gradient is too shallow and gets masked by
the fluctuations inherent in the molecular adsorption events (14).
By contrast, in the case of a small phytoplankton cell the concen-
tration field is typically weaker and tightly localized in space: the
signal will thus be indistinguishable from the background until
the bacterium is in very close proximity to the phytoplankton,
when it will experience a sharp increase in the rate of molecular
adsorption events within a short time (Fig. 1 B andD). Detection
of such gradients can fail as a result of the dynamic noise which
arises from the combined effect of bacterial motion and the finite
sensory timescale T : even though the gradients are steep and
much less masked by fluctuations, they might not be detected
because they occur over timescales smaller than the time required
by the bacterium to process the signal. Such resolution limitations
are inherent to any measurement system characterized by a finite
processing time (25), including the bacterial chemotaxis pathway
which is known to act as a low-pass filter (26, 27), but their effect
on bacterial chemotaxis toward phytoplankton has remained
unexplored. Furthermore, not only does the type of noise change
as phytoplankton size decreases, but so does the nature of ran-

smooth variation
wide spatial extent
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Fig. 1. Detecting chemical gradients to increase encounter rates with phytoplankton is a size-dependent challenge for bacteria. Bacteria experience
concentration gradients in the form of temporal sequences of molecular adsorption events (green bars in panels A and B). Gradients are estimated by integrating
the adsorption sequences over intervals of length T , the sensory timescale (orange broken lines). The phytoplankton size determines the lengthscale over which
the gradients extend (C and D), leading to adsorption sequences with well-distinguished features for small and large sources. Large phytoplankton produce
profiles with wide spatial extent: the rate of molecular adsorptions increases slowly over time and their detection is limited by molecular fluctuations (A and C).
Small phytoplankton produce spatially confined profiles: the rate of molecular adsorptions increases sharply over a short time and their detection is limited by
the dynamic noise arising from bacterial motion and finite temporal resolution (B and D). Timeseries were generated from simulations of Poissonian adsorption
events for a bacterium moving at constant speed in the steady-state diffusive concentration field (Eq. 1) produced by phytoplankton cells of different sizes.
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dom encounters between bacteria and phytoplankton: bacteria–
phytoplankton encounters are diffusive for large phytoplankton
(i.e., the encounter rate scales linearly with phytoplankton size)
but ballistic for small phytoplankton (i.e., the encounter rate
scales quadratically with phytoplankton size) (28, 29).

Here, we explore how these limits of gradient sensing, arising
from two different types of noise, one associated with inherent
fluctuations and the other with the movement and sensory
timescale of bacteria, determine chemotactic performance of
bacteria toward phytoplankton cells. Combining the limitations
on sensing with the ballistic or diffusive nature of random
encounters with phytoplankton, we compute an upper bound
on the chemotactic index, a dimensionless number that measures
the increase in the encounter rates of bacteria with phytoplankton
cells due to chemotaxis over random motility alone. Our analysis
reveals an asymmetric performance landscape as a function of
phytoplankton size. We find that for large phytoplankton, the
chemotactic index has a weak dependence on leakage rate and
bacterial phenotypes associated with motility and sensing. In
stark contrast, for small phytoplankton the chemotactic index
is highly sensitive to leakage rate and bacterial phenotypes.
When considered in the context of encounters within marine
phytoplankton communities, our findings reveal that bacteria
with low swimming speed and long sensory timescales may
obtain large benefits from chemotaxis in the search for small
phytoplankton, whereas fast swimmers are unable to exploit

chemotaxis in the search for small phytoplankton but perform
consistently better in the search for larger phytoplankton.

Theoretical Model for Chemotactic Encounters

To understand how phytoplankton size affects the ability of
bacteria to detect gradients, we consider an ideal bacterium whose
chemotactic performance is limited only by the ability to detect a
chemoattractant gradient at a distance from a phytoplankton cell.
Following previous work (6, 19), we represent a phytoplankton
cell as a sphere of radius R (Fig. 2A) that continuously exudes
chemoattractant homogeneously through its surface, via either
active or passive mechanisms (6). Regardless of the exudation
mechanism, the chemoattractant then diffuses away from the cell.
At steady state, which is reached within timescales of seconds to
minutes SI Appendix, the concentration field around the cell is

C(r) = C0 + CS
R
r
, [1]

whereC0 is the background concentration of the chemoattractant
far from the phytoplankton, CS is the excess concentration
of the chemoattractant at the phytoplankton cell surface (i.e.,
the concentration above C0), and r is the radial distance from
the center of the phytoplankton cell. In SI Appendix, we
show that all results obtained below are also valid if bacterial
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Fig. 2. Chemotactic encounters are limited by the gradients’ steepness and spatial extent, and ballistic or diffusive encounters with the sensing horizon. (A)
A phytoplankton cell of radius R produces a chemoattractant field C(r) = C0 + CSR/r (Eq. 1, magenta curve). CS is the chemoattractant concentration at the
phytoplankton surface in excess of the bulk background concentration C0. Far from the cell, bacteria cannot sense the chemoattractant and thus swim in
unbiased random walks, with correlation length �. The “sensory horizon” S is the distance from the phytoplankton cell at which a perfect chemotaxer can detect
the gradient and encounters its target with 100% probability (Eq. 3). (Inset) Chemosensing is a molecule-counting process driven by the adsorption of individual
chemoattractant molecules, which reach the bacterium via diffusion (we consider a single chemical species with diffusivity DC ) while the bacterium swims at
speed U. (B) Depiction of the performance landscape for chemotactic searches. The phytoplankton radius R and the excess chemoattractant concentration
CS , which we treat as independent parameters both here and in Figs. 3 and 4, determine whether gradients can be successfully detected or not. For a given
phytoplankton radius R, there is a minimum value of CS for gradient detection to be possible; this set of values defines a convex boundary of detection (thick
black line) which separates regions in the landscape where gradient detection is possible (the region above) or not (the region below). Below the boundary of
detection, two conditions limit an organism’s ability to perform chemotaxis: gradients are either too spatially confined (Left, Eq. 4a) or too shallow (Right, Eq.
4b). The limiting factor for detection is determined by the relationship between phytoplankton radius R and the distance traveled by a bacterium during one
sensory interval, UT . In the region of detectability (IC > 1) IC is determined by the relationship between the swimming correlation length �, the phytoplankton
radius R and the sensory radius S. The size dependence of random encounters identifies two subregions within the region of detectability (here qualitatively
represented by the yellow-red shading), in which the chemotactic index displays two distinct behaviors. Small phytoplankton (C) lead to ballistic encounters for
which the chemotactic index scales quadratically with the sensory radius S, whereas for large phytoplankton (D) the chemotactic index scales only linearly with
S due to the diffusive nature of encounters.
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consumption of chemoattractant is taken into account, leading
to an exponentially screened concentration field. In the absence
of chemoattractants, a motile bacterium performs a random
walk (30) with swimming speed U and correlation length �
(Fig. 2A). When chemoattractant gradients are present, the
bacterium can bias its motion up the gradient, increasing its
chances of encountering the phytoplankton. An exact evalua-
tion of the encounter-enhancing effect of chemotaxis requires
explicit consideration of the details of the bacterial motility and
chemosensory system, which may vary significantly across species
and physiological states. With the aim of seeking more general
conclusions, we focus instead on computing an upper bound
to the increase in encounter rates afforded by chemotaxis that
will be valid for a wide variety of organisms, by considering
the bacterium to be a “perfect chemotaxer.” We assume that,
around a phytoplankton cell, there is a sensory horizon S, which
corresponds to the maximal distance at which a bacterium can
reliably detect the gradient generated by the phytoplankton
(Fig. 2A). Outside the sensory horizon no chemotaxis is possible
and the bacterium moves purely by random motility, but as
soon as the sensory horizon is reached, the perfect chemotaxer is
able to navigate flawlessly toward the phytoplankton cell, always
yielding an encounter with the phytoplankton. This concept of
sensory horizon can be considered equivalent to those of capture
radius, sensing range, or reaction distance often introduced in
the study of predation and encounters in higher organisms
(31–34). The encounter rate of the perfect chemotaxer is thus
limited only by random encounters with the sensory horizon
S: this simplification of the problem allows one to use existing
solutions for random encounters between spherical objects (29).
The problem of chemotactic encounters with the phytoplankton
cell is therefore reduced to the problem of identifying the sensory
horizon S, as a function of the phytoplankton radius R. Due to
its idealized response, which always ensures an encounter with
the phytoplankton upon gradient detection, the performance of
the perfect chemotaxer is an upper limit on the performance of
any real chemotactic bacterium.

The Signal-to-Noise Ratio Determines the
Effectiveness of Chemotaxis

The spatial extent of the sensory horizon is defined as the
distance from the phytoplankton at which bacteria can detect
the gradient of chemoattractants exuded by the phytoplankton.
We determine this distance in terms of the signal-to-noise
ratio (SNR) associated with the bacterial measurements of the
gradient, extending the approach Hein et al. (15) used to study
chemotaxis toward ephemeral Gaussian pulses, by including the
noise associated with the spatial confinement of the signal. In a
steady concentration profile, the signal is the rate of change of
concentration experienced by the bacterium over time as it swims,
|U∇C | (11, 15). The noise arises through the fluctuations in the
adsorption of attractant molecules, which reach the bacterial cell
surface with diffusivity DC (Fig. 2 A, Inset) (11). In constant
gradients (i.e., concentration fields varying linearly with distance
from their source) the inherent noise in the gradient measurement
arising from fluctuations in molecular adsorption events was
derived by Mora and Wingreen (14) as �0 =

√
3C/(�aDCT 3).

The gradient associated with the concentration field around
a phytoplankton cell (Eq. 1) is instead not constant, having
a magnitude |∇C(r)| = CSR/r2 that increases as bacteria
approach the phytoplankton and attains its maximum at the
phytoplankton surface. As a step to account for this increase,

we approximate the local gradient experienced by the bacterium
within a single sensory windowT as a linearly increasing gradient,
which yields the following revised estimate of the noise SI
Appendix,

�∗0 = �0

√
1 +

3
20

(
UT

R + Δr

)2
, [2]

where Δr is the distance from the surface of the phytoplankton
cell. Eq. 2 highlights the importance of bacterial movement
and phytoplankton size in the sensing process: for large phy-
toplankters (R � UT ), at any distance Δr the correction to
�0 is negligible; but when the phytoplankton is small compared
to the distance traveled by the bacterium during the sensory
interval T and the bacterium is close to the phytoplankton
(UT > R + Δr), the sensing noise increases considerably.
This result shows that motion in nonlinear concentration fields
has the effect of a low-pass filter, which prevents bacteria
from accurately measuring high-frequency variations in the
concentration field, i.e., gradients tightly confined in space.
Interestingly, the equation for the sensing noise highlights a
tradeoff in the bacterial swimming speed: While a larger speed U
increases the signal (the local gradient |U∇C |), it also increases
the sensing noise in the detection of gradients generated by small
phytoplankton (Eq. 2). Higher swimming speeds may, therefore,
not always be beneficial for chemotaxis to phytoplankton, in
particular when phytoplankton cells are small.

While it clarifies the role of movement and size, the ap-
proximation of the gradient as locally linear, that we used to
derive Eq. 2, does not yet capture the limit of the smallest
phytoplankton cells, for which the sharp increase in the gradient
amplitude may be so tightly confined that it occurs within a
single sensory interval T (Fig. 1 B and D). This is ecologically a
very important scenario, yet we found this case to be analytically
intractable. We therefore introduce, phenomenologically, a low-
pass filter f (x) = 1 − exp(−x3/2) in the expression of the
SNR, which degrades the high-frequency components of the
signal (f (x � 1) ∼ 0) without affecting the detection of lower
frequency components (f (x � 1) ∼ 1). We then define the
sensory horizon S as the farthest distance from the phytoplankton
cell at which the SNR is above a threshold q. S is, therefore, the
solution to the equation

SNR =
|U∇C(S)|f (UT /S)

Π�0(S)
= q, [3]

which we solve numerically (SI). In Eq. 3, we introduced a
constant chemotactic precision factor Π to explicitly represent
noise amplification in the signal processing internal to the
chemotaxis pathway (16). This choice is motivated by previous
observations that in the marine bacterium Vibrio anguillarum the
response to chemoattractant pulses was accurately described by
multiplying the theoretical noise, �0, by a chemotactic precision
factor Π ≈ 6 (16). In what follows, we therefore set Π = 6.
We also set q = 1 throughout, which equates to defining S as
the distance from the phytoplankton where bacteria can detect
a positive gradient with a probability of ≈ 84% SI Appendix.
While a precise numerical solution of Eq. 3will be obtained later,
an approximate calculation readily determines the boundary of
detection, i.e., a curve CS,min(R) in the (R, CS) performance
landscape that determines whether a phytoplankton of radius R
is detectable (CS > CS,min(R)) or not (CS < CS,min(R)). By
solving Eq. 3 in the two limit cases S = UT and S = R,
corresponding respectively to the detection being limited by
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gradient confinement and gradient steepness, and with the
additional approximation C0 = 0, we obtain two curves SI
Appendix

C left
S,min ≈ 34.4

U
aDCR

, (S = UT ) [4a]

C right
S,min ≈ 34.4

R2

aDCU 2T 3 , (S = R) [4b]

which define a convex region in the space of phytoplankton
phenotypes R and CS (Fig. 2B), that we call the region of
detectability, where bacteria can detect the gradients produced
by phytoplankton cells.

When gradient detection is possible, the performance of a
bacterium’s search for a phytoplankton is limited by its random
encounters with the sensory horizon, since no chemotaxis is
possible outside the sensory horizon. For perfect chemotaxis,
reaching the sensory horizon S ensures that the bacterium will
eventually reach the phytoplankton cell: The problem of chemo-
tactic encounters with the phytoplankton cell thus simplifies to
the problem of random encounters with the sensory horizon.
We can then quantify the maximum possible performance of a
chemotactic search through the chemotactic index, IC , which we
define as the ratio between the rate of random encounters with
the sensory horizon S and the rate of random encounters with
the phytoplankton cell of radius R, as

IC = Γ(S)/Γ(R). [5]

Γ(x) is the encounter kernel that quantifies the random encoun-
ters of the bacterium with a target of radius x and represents
the amount of volume swept per unit time by the motion of
the bacterium relative to the phytoplankton (28, 29, 32). For
simplicity, we only consider nondestructive encounters (35),
in which the phytoplankton and chemical gradients remain
unaffected by the encounter event. Moreover, we ignore stages of
interaction successive to the encounter with the sensory horizon,
after which the bacterium might, for example, reside in the
proximity of the phytoplankton for prolonged times (20) and
experience multiple successive encounters with the same phyto-
plankton. Chemosensing is successful and increases encounters
when the bacterium can detect a gradient at a distance from the
phytoplankton cell, that is when a sensory horizon S > R exists;
in this case, the chemotactic index will be IC > 1. When a sensory
horizon S > R does not exist, bacteria cannot detect gradients
at a distance from the phytoplankton cell, so chemotaxis cannot
enhance encounter rates and therefore IC = 1 (we ignore possible
scenarios where chemotaxis is detrimental to encounters, leading
to IC < 1). Within the region of detectability (IC > 1, Fig. 2B),
IC is determined by the relationship between the correlation
length of the bacterial random walk, �, the phytoplankton
radius, R, and the sensory horizon, S (SI Appendix, Eq. S44).
In particular, the encounters with small phytoplankton cells
(� > S > R) have a ballistic nature (Γ ∼ R2) (36) and result
in a quadratic scaling of the chemotactic index with the sensory
horizon, IC = S2/R2 (Fig. 2C). For large phytoplankton cells
(� < R < S) encounters have a diffusive nature (Γ ∼ R) (37, 38)
and the chemotactic index scales only linearly with the sensory
horizon, IC = S/R (Fig. 2D).

We note that our definition of the chemotactic index is
analogous to that used in the in situ chemotaxis assay (ISCA).
The ISCA is a microfluidic assay for deployment in aqueous
environments. It measures the strength of bacterial chemotaxis

to a given compound in situ by comparing the number of bacteria
that accumulate, after a given deployment time of typically 1 h, in
a well filled with that compound, to the number of bacteria found
in a negative control well devoid of chemoattractants (1, 39, 40).
Our results may, therefore, be interpreted as providing an upper
bound on the chemotactic index obtained in ISCA experiments
with inlets of different sizes containing chemoattractants in
different concentrations. We next solve Eq. 3 numerically for S
and use the solution to compute IC according to Eq. 5 and thus
quantify the chemotactic performance as a function of bacterial
and phytoplankton phenotypes.

Asymmetry of Chemotactic Performance

We find that chemotaxis toward small phytoplankton cells can
be risky but highly rewarding. We illustrate this by applying
our model to a typical motile marine bacterium with radius
a = 0.5 μm, swimming speed U = 50 μm/s and sensory
timescale T = 100 ms, that is chemotactic toward a low-
molecular-weight compound with diffusivity DC = 500 μm2/s
(Fig. 3). We assume the background concentration of the
compound (C0 in Eq. 1) to be 1 nM, typical of oligotrophic ocean
waters (13) (calculations with different background concentra-
tions are shown in SI Appendix, Fig. S6). Using our model, we
quantified the chemotactic performance landscape by computing
the chemotactic index as a function of the phytoplankton radius
R and the excess concentration CS (which is proportional to
the phytoplankton leakage rate). We stress that, in the analysis
below, CS and R are free parameters; later, we will include
the physiological constraints the cell size imposes on the excess
concentration. The performance landscape exhibits a convex,
V-like, shape, with its apex around R ≈ UT , as predicted
by the approximate Eq. 4, and shows a marked asymmetry
between small and large phytoplankton (Fig. 3A). Specifically,
the chemotactic index has a much sharper dependency on CS
when the phytoplankton radius R is small (R < 2 μm in this
example), especially close to the boundary of detection (IC = 1)
(Fig. 3B). This indicates that even modest variations in the excess
concentration CS leaked by a small phytoplankton can have
large impacts on the performance of bacterial chemotaxis. In
the example, while bacteria will not be able to sense (IC = 1) an
attractant gradient from a 1 μm phytoplankton creating an excess
concentration of CS = 10 nM, a moderately higher value CS =
30 nM yields a high chemotactic index IC = 10. As CS is further
increased, the dependency of IC onCS becomes weaker. For larger
phytoplankton cells, the increase in performance is more gradual:
above the boundary of detection (IC = 1), IC grows slowly with
increasing CS . Looking across phytoplankton radii R, for small
values of the excess concentrationCS an increase in R leads first to
a sharp increase in chemotactic index and then a gradual decrease
toward IC = 1 when R exceeds an optimal value (Fig. 3C ).

The behavior of the chemotactic index close to the boundary
of detection (IC = 1) reveals the origin of the asymmetry in the
chemotactic performance landscape. For chemotaxis toward large
phytoplankton (right boundary), gradient detection is limited by
gradient steepness. If the excess concentration of chemoattractant
around the phytoplankton is just sufficient to allow gradient
detection, the sensory horizon will only be marginally bigger than
the size of the phytoplankton, S = R(1 + ") (where " � 1),
because the gradients in the concentration profile in Eq. 1 are
steepest near the phytoplankton. Since encounters with large
targets are diffusive, the encounter rate is proportional to target
size, yielding IC ∼ S/R ∼ 1+": the chemotactic index increases
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Fig. 3. The stakes are high for encounters with small phytoplankton—the chemotactic index is largest for small phytoplankton, but it drops sharply when
gradient detection fails. (A) Performance (IC ) landscape for a bacterium using chemotaxis to drive encounters with spherical targets of different radii (R) and
chemoattractant concentrations (CS ) calculated using Eqs. 3 and 5 (see also SI Appendix, Eq. S44). The thick white line defines the boundary of detection,
separating the region where gradients are detectable and chemotaxis is beneficial to encounters (IC > 1) from the region where gradients are too shallow or
too spatially confined to be detected (IC = 1). Broken orange lines are the approximate predictions for the minimum value of CS at which detection is possible
(Eq. 4). (B) Vertical transects from panel A for fixed values of the target radius R (corresponding to the upward-pointing triangles). In chemotaxis toward small
targets, a slight variation in the chemoattractant concentration can make the difference between a highly successful search (IC ≈ 10) or a failure (IC = 1), whereas
for larger targets the dependency of IC on the chemoattractant concentration is more gradual. (C) Horizontal transects from panel A for fixed values of the
chemoattractant concentration CS (corresponding to the right-pointing triangles). For weak sources, an increase in size R produces initially large enhancements
in chemotactic performance, with diminishing returns upon further enlargement. As the source gets stronger, the increase in performance for chemotaxis
toward small targets becomes disproportionately larger; larger sources also become detectable although offering modest performance improvements over
random searches. A script to generate an interactive dashboard for the rapid evaluation of the IC landscape is available from GitHub (see Movie S1 for a demo).

smoothly as the boundary of detection is crossed. By contrast,
for small phytoplankton (left boundary), gradient detection is
limited by the gradient’s spatial extent. The minimal sensing
horizon that can be detected is therefore on the order of the
distance traveled by the bacterium in a single sensory interval,
S ∼ UT . Since encounters with small cells are ballistic, the
encounter rate is proportional to the square of the target size, and
thus IC ∼ (S/R)2

∼ (UT /R)2: the chemotactic index exhibits
a large jump from 1 to (UT /R)2 as the boundary is crossed.
For example, in Fig. 3, we have UT = 5 μm, which implies a
jump of the order (UT /R)2

∼ 25 for a small phytoplankton cell
with R = 1 μm, which captures the order of magnitude of the
jump observed in Fig. 3C (green line). We next show that this
asymmetry of the performance landscape is robust to changes in
the key parameters.

Dependence of Chemotactic Performance on
Physical Parameters

Variations in the swimming speedU , the sensory timescaleT and
the chemoattractant diffusivity DC , determine the performance
of chemotaxis for a given phytoplankton radius and excess
concentration, but do not affect the fundamental structure
of the performance landscape (Fig. 4). This can be seen by
comparing the landscapes obtained through the variations in
individual parameters against the reference landscape computed
in Fig. 3, where we used U = 50 μm/s, T = 100 ms, and
DC = 500 μm2/s. A reduction in the sensory timescale T from
100 to 50 ms [two values on the low end of the estimates for
bacterial sensory timescales (11, 19, 41–43)] decreases the ability
of bacteria to detect gradients from large phytoplankton cells
and reduces the overall performance of chemotaxis (Fig. 4A; SI
Appendix, Figs. S7A and S8D). A smaller value of T is associated
with a larger sensing noise (∝ T−3/2) but with a smaller dynamic

noise because the measurement frequency is increased. The
position of the left boundary of detection is unaffected by the
variation in T (Eq. 4a) but the right boundary is shifted toward
larger values of CS as T increases (Eq. 4b). An increase in the
swimming speed U from 50 to 100 μms [respectively a moderate
and a large value for the average swimming speed of marine
bacteria (23, 44)] improves the performance of chemotaxis within
the region of detectability (since the raw signal |U∇C | increases),
but the region of detectability itself is shifted toward larger values
of the phytoplankton radius: asU increases, higherCS is required
to detect small phytoplankton (Eq. 4a) but lowerCS is required to
detect large phytoplankton (Eq. 4b). This result highlights that an
increased swimming speed results in a tradeoff between degraded
spatial resolution, due to the lower frequency of measurements,
and improved sensitivity (Fig. 4B; SI Appendix, Figs. S7B and
S8E). A surprising consequence is that lower swimming speeds
may improve the performance of chemotactic searches toward
small phytoplankton cells. An increase in the diffusivity of the
chemoattractant DC from 500 to 1,000 μm2/s (values which
are representative respectively of sugars (45), and DMSP (46) or
amino acids (47)) enhances the SNR (sensing noise ∝ D−1/2

C )
without affecting spatial resolution, and thus shifts the region
of detectability toward lower CS values (Fig. 4C ; SI Appendix,
Figs. S7C and S8F ), as also described by the 1/DC dependency
of the two boundaries (Eq. 4). In summary, we have shown
that bacterial chemotactic searches for phytoplankton cells are
characterized by a fundamental asymmetry in the performance,
which does not depend on the specific values of the parameters
involved in the search: the performance of chemotaxis toward
large phytoplankton varies smoothly with variations in leakage
rate and other parameters, while the performance of chemotaxis
toward small phytoplankton is highly sensitive to variations in the
search parameters and may exhibit sudden jumps between high-
gain and no gain at all (IC = 1). This suggests an interpretation
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100 μm/s
1000 μm2/s

500 μm2/s100 ms
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Fig. 4. Bacterial phenotypes and chemoattractant diffusivity control the chemotactic index but do not alter the high-stakes nature of encounters with small
phytoplankton. Performance landscapes of different chemotactic strategies obtained from theoretical (A–C) and computational (D–F ) models. In all the panels,
the pink curve is the detection boundary for a reference system with swimming speed U = 50 μm/s, sensory timescale T = 100 ms, and chemoattractant
diffusivity DC = 500 μm/s2 (same as in Fig. 3A). (A) Reduction in sensory timescale T from 100 ms to 50 ms. (B) Increase in swimming speed from 50 μm/s to
100 μm/s. (C) Increase in chemoattractant diffusivity from 500 μm2/s to 1,000 μm2/s. (D–F ) Theoretically predicted features of bacterial chemotactic performance
are reproduced by a minimal model of an ideal sensor based on the Kolmogorov–Smirnov test. In panels D–F, the white line is the detection boundary from the
theoretical prediction of panels A–C, respectively; the heatmap represents values of the chemotactic index obtained from numerical simulations of the ideal
sensor (linearly interpolated). Despite small quantitative differences in the estimated IC values, arising from the distinct signal processing mechanism and the
finite spatial resolution of numerical simulations, the features of the performance landscape (shape and asymmetry) are clearly conserved.

of chemotaxis to small phytoplankton cells as a high-stakes
adaptation.

An Ideal Sensor Model

To demonstrate that our conclusions are not the result of
specific model choices, we further develop a more general
framework based on a minimal numerical model of an ideal
sensor (Fig. 4 D–F ). This ideal sensor is defined as a sphere
moving at constant speed U toward a phytoplankton cell
surrounded by a chemoattractant field C(r). As it moves, the
ideal sensor registers all the adsorption events of chemoattractant
molecules, occurring as Poisson events with instantaneous rate
4�DCaC(r), where r is the instantaneous distance of the sensor
from the center of the phytoplankton. After a time interval
T , all registered events are processed and a new acquisition
starts. For signal processing, the sensor performs a one-sided
Kolmogorov–Smirnov test (48) comparing the distribution of
the waiting times between successive adsorption events recorded
in the first and the second half of the acquisition interval T . If
the cumulative distribution function is larger in the second half
of the interval than in the first half (with P-value P < 0.05),
then the sensor has detected a positive gradient. Averaging the
successful gradient detections over an ensemble (N = 1,000) of
such ideal sensors provides an estimate of the sensory distance
S, defined as the largest distance r, where at least a fraction f of
the sensors has detected a gradient. The estimates of S can then
be used to evaluate the chemotactic index IC as we have done
for the bacterial model (Eq. 5). Remarkably, we find that with

a high consensus threshold (f = 0.99), the ideal sensor model
provides close agreement with our theoretical calculations, both
in terms of the V-shape of the detectability region and of the
predicted IC values (Fig. 4 D–F ). One discrepancy is the exact
location of the left boundary of the detectability region, which
reflects the sensitivity of the chemotactic index to the details of
the signal processing, i.e., to the way high-frequency signals are
degraded. In Eq. 3, we represented the signal degradation through
the phenomenological low-pass filter f (x); the Kolmogorov–
Smirnov sensor still shows low-pass characteristics for small
phytoplankton but the filtering function is different (for a
detailed discussion of this minimal model and the simulation
procedure, see SI Appendix and SI Appendix, Fig. S9). This close
agreement highlights the generality of our findings, since they are
recapitulated by an ideal sensor lacking many of the specific search
characteristics of a chemotactic bacterium. We next explore the
ecological consequences of the asymmetry in the performance
of bacterial chemotaxis toward phytoplankton, by taking into
account physiologically realistic values of the excess concentration
and using the resulting chemotactic indices to estimate typical
search times in phytoplankton communities.

Chemotactic Encounters in Marine
Phytoplankton Communities

The physiological range of exudation rates for healthy phyto-
plankton cells spans a region crossing the boundary of chemotac-
tic detection (IC = 1, Fig. 5A). Up to now, we have considered
the excess concentration CS as a free parameter that could take on
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PER = 2%

PER = 40% PER = 10%

A

B

C D

C0 = 1 nM C0 = 100 nM

Fig. 5. The asymmetric performance of bacterial chemotaxis toward phytoplankton cells may promote a diversity of search phenotypes. (A) Characteristic
values of size and released chemoattractant for phytoplankton cells are constrained by carbon-size scaling laws (pink areas). When overlaid on the performance
landscape of a bacterium (same as in Fig. 3A), the physiological range of exudation rates lies across the boundary of detection. The thick pink line corresponds to
phytoplankton cells with a percent extracellular release (PER) of 10%, the shaded pink band represents variations in the PER between 2% (lower limit) and 50%
(upper limit). (B) Marine phytoplankton communities are dominated by small cells. The size structure follows a power-law distribution, where the abundance N
decreases with increasing size R as N(R) ∝ R−3� . The allometric exponent is larger in oligotrophic waters (� = 1.0) than in more productive waters (� = 0.75).
For the oligotrophic community we assume a total abundance of 1e5 cells/mL, and 2e5 cells/mL for the productive community. (C and D) Comparison of
average search times between random motility and chemotaxis. Carbon-size scaling, phytoplankton community structure, and chemotactic index jointly define
the average search time (Te) (Eq. 6) an individual bacterium requires to encounter a phytoplankton cell using chemotaxis. The thin broken lines represent the
search times in the absence of chemotaxis (IC = 1). The thick lines with markers indicate search times for phytoplankton cells with PER of 10% (corresponding
to the thick pink line in panel A), and the shaded bands represent variations in PER between 2% and 40% (matching the pink shaded band in panel A). The two
curves correspond to distinct bacterial phenotypes: in green with circle markers, a bacterium with low speed and long sensory timescale; in violet with square
markers, a bacterium with high swimming speed and short sensory timescale. The vertical dotted lines mark the radii corresponding to the 95th and 99th
percentiles of the phytoplankton community abundance. A script to generate an interactive dashboard for the rapid evaluation of search times is available
from GitHub (see Movie S2 for a demo).

a wide range of values. The physiology of marine phytoplankton,
however, imposes a coupling between cell size R and excess
concentration CS so that for a phytoplankton of a given size, a
narrower range ofCS values is most typical. Empirical carbon-size
scaling laws predict that the carbon content of a phytoplankton
cell scales with cell radius as ∼ R2.28 (49). The percent
extracellular release (PER), defined as the dissolved fraction of
the total primary production (4, 50), then determines the rate at
which the phytoplankton cell leaks carbon to the environment,
in the form of dissolved organic matter (6, 19) (see SI Appendix
for details). PER values are of the order of 10% (i.e., 10% of the
total primary production is exuded instead of being metabolized
for growth), but can range from 2% up to 40%, highlighting
the strong dependence of the release rate on physiological and
environmental conditions (51). Higher PER values may be
correlated with higher stress levels of the phytoplankton, resulting
in the inability to store or metabolize carbon. For any given
phytoplankton radiusR, we thus obtain a range of exudation rates
(corresponding to a range of PER values) which determine the
excess concentration CS at the surface of the phytoplankton cell
(SI Appendix, Eqs. S1–S7). Overlaying this range of ecologically
relevant values onto the chemotactic performance landscape
(Fig. 5A) reveals that chemotaxis might increase encounters
across the entire phytoplankton size spectrum. Bacterial detection
of the gradients generated by the smallest phytoplankton cells
(R < 3 μm) may only be possible at high PER levels, whereas at
low PER levels the gradients may be too tightly confined in space
for bacteria to detect them.

The steeply decreasing size structure of marine phytoplankton
communities favors encounters of bacteria with small phyto-
plankton cells. The average search time Te required by one
bacterium to encounter a phytoplankton cell is SI Appendix

Te =
1

IC (R)Γ(R)N (R)
, [6]

where N (R) is the concentration of phytoplankton of radius R
and Γ(R) is the random encounter kernel between bacteria and
phytoplankton of size R. Marine phytoplankton communities
have size structures that usually follow a power-law size-
abundance relationship of the form N (R) ∝ R−3� , where
the allometric exponent � takes values between � ≈ 1.0 in
oligotrophic waters and � ≈ 0.75 in productive waters (18).
Phytoplankton cells with small radii are, therefore, vastly more
abundant than those with large radii, particularly so in olig-
otrophic environments where large phytoplankton are very rare
(Fig. 5B). Moreover, we consider an overall larger cell abundance
in productive waters (a total of 2e5 cells/mL between 0.5
and 70 μm in radius) with respect to oligotrophic waters (a
total of 1e5 cells/mL between 0.5 and 70 μm in radius) (18).
Larger cell abundances are also reflected in higher background
chemoattractant concentrations, for which we assume C0 =
1 nM in oligotrophic waters and C0 = 100 nM in productive
waters (13). We first note that, in the absence of chemotaxis,
the steep size structure of phytoplankton communities alone
results in bacterial search times that are much shorter for small
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phytoplankton than for larger ones (broken lines in Fig. 5 C and
D). In both environments, a faster bacterium with U = 60 μm/s
(thin violet broken lines in Fig. 5C andD) will experience shorter
search times across the entire size spectrum since faster swimming
always increases the rate of random encounters. We now show
that, when chemotaxis is taken into account, the asymmetric
performance landscape of bacterial chemotaxis further raises the
stakes for bacterial encounters with phytoplankton at the low end
of the phytoplankton size spectrum.

Chemotaxis can markedly reduce search times for phyto-
plankton in the sub-5 μm size range, but different bacterial
phenotypes display substantial performance differences in the
low end of the phytoplankton size spectrum (Fig. 5 C and
D). The decrease in search time afforded by chemotaxis over
the whole range of phytoplankton PER values considered is
shown as a shaded band in Fig. 5 C and D, with the thick
marker-decorated line representing PER = 10%. In oligotrophic
waters, slower bacteria (U = 25 μm/s) with a longer sensory
timescale (T = 250 ms) decrease their search times for the
smallest phytoplankton by almost a factor 10 compared to
random motility, whereas faster bacteria (U = 60 μm/s) with
a shorter sensory timescale (T = 100 ms) cannot benefit at
all from chemotaxis at this low-end of the phytoplankton size
spectrum and may be outperformed by the slow swimmers
when the phytoplankton PER is high (Fig. 5C ). While the
major difference in the IC values between the two strategies just
considered is limited to phytoplankton in the micrometer range,
this region of the size spectrum encloses the vast majority of the
phytoplankton: in both environments, the 95th percentile of the
population (dotted vertical lines in Fig. 5 C and D) is below
the 2 μm radius. We also note that the boost in chemotactic
performance toward small cells occurs only at high PER values,
whereas no gain is obtained at intermediate or low PER values.
This indicates that chemotaxis toward small phytoplankton may
be primarily beneficial when phytoplankton cells are very leaky, as
occurs, for example, in the late stages of a bloom or for damaged
or senescent individuals (4) (see also SI Appendix for discussion
on the effect of chemoattractant diffusivity). In contrast, for
larger (>2 μm) phytoplankton, both phenotypes can benefit
from chemotaxis also at lower PER values; while the resulting
search times are comparable, the fast swimmers display shorter
search times. In productive waters, where large cells are more
abundant and the background concentration of chemoattractants
is higher, neither of the two bacterial phenotypes is able to use
chemotaxis to reduce search times for phytoplankton cells smaller
than ∼2 μm (Fig. 5D). Here, the faster bacteria outperform the
slower ones in the search for phytoplankton over the entire size
spectrum.

To further characterize the impact of chemotaxis on encoun-
ters within phytoplankton communities, we integrate the search
times (Fig. 5 C and D) over the phytoplankton size spectrum
Over the course of 1 d, a typical bacterial lifetime (52), an indi-
vidual slow-swimming bacterium in oligotrophic environments
will experience, on average, between 1 random (PER = 0)
and 13 chemotactic (PER = 40%) encounters, and a faster
bacterium will similarly experience 3 random (PER = 0) to
12 chemotactic (PER = 40%) encounters. When integrated
across the phytoplankton size spectrum, the superior chemotactic
performance of slow swimmers toward picophytoplankton thus
offsets the random encounter advantage of fast swimmers,
supporting the idea that the two search phenotypes may coexist
in oligotrophic oceans. In productive waters, a slow swimmer
would experience 3 to 14 encounters per day, while a fast
swimmer would range between 8 and 21 encounters per day.

We can thus conclude that chemotaxis can enhance bacteria–
phytoplankton encounters up to 10-fold compared to random
motility. To obtain the total number of encounters occurring in
a given volume of seawater, these numbers must be multiplied
by the concentration of heterotrophic bacteria (1e5 cells/mL
in oligotrophic waters and 1e6 cells/mL in productive waters,
of which we consider only 10% to be motile) (44, 53). The
results predict that there are up to 8e4 bacteria–phytoplankton
chemotactic encounters occurring every day in a milliliter of
oligotrophic waters, and up to 1.7e6 in a milliliter of productive
waters (SI Appendix, Fig. S10). Moreover, if we assume the
individual encounters to be Poissonian events SI Appendix,
the search times will follow an exponential distribution, so that if
the average search time is Te, half of the encounters will occur in
less than 0.7Te, and 10% of them will occur in less than 0.1Te.

Discussion

The differences in the chemotactic performance of two repre-
sentative bacterial phenotypes showcased in Fig. 5 highlight how
the tradeoff between higher swimming speed and sensing noise
in chemotaxis toward small phytoplankton (Eq. 2) may only be
relevant under certain environmental conditions. Low swimming
speeds and long sensory timescales may be considered a high-risk
adaptation that provides very high gains: Although bacteria with
such phenotypes are otherwise outperformed by faster swimmers,
they can have superior performance in the search for very leaky
picophytoplankton, which may constitute the most favorable
niche in conditions where nutrients and large phytoplankton are
scarce. Higher swimming speeds, which provide a higher baseline
rate of random encounters at the cost of reduced chemotactic
performance in the low end of the phytoplankton size spectrum,
are instead a low-risk adaptation, offering robust gains across a
wider range of conditions. We propose that this asymmetry can
be a promoter of coexistence between diverse search phenotypes
in bacterial populations.

The chemotactic encounter problem can be seen as an
evolutionary game where search time is one of the factors
influencing the fitness of bacteria. It is important to keep in
mind, however, that the encounter with the sensory horizon
is only the first step of a multistage interaction process and
that fitness is ultimately determined by the ability to grow and
reproduce (“growth return”). A more complete ecoevolutionary
picture would require simultaneous knowledge of the search time
and the growth return associated with phytoplankton cells of
different sizes. In this respect, chemotaxis is expected to not
only reduce search times but also improve growth returns by
allowing bacteria to remain near a phytoplankton cell, where
concentrations of dissolved organic matter are higher (54).
Indeed, Raina et al. (20) have shown that M. adhaerens can use
chemotaxis to increase both nitrogen uptake from Synechococcus
cells and encounter rates with their phycosphere. Generally, it can
be expected that larger phytoplankton, while offering less drastic
enhancements in search times through chemotaxis, provide larger
growth returns, yet a quantitative consideration of the growth
return should also include estimates of the energy expenditure
associated with motility (which increases quadratically with
swimming speed) and chemotaxis (55, 56), and the mortality cost
associated with predation, which may increase with swimming
speed or as a result of extended residence times in nutrient-
rich regions (57, 58). Future research in this direction may
consider more sophisticated encounter models, able to account
for example for hovering, reversible and irreversible attachment,
spatial correlations in dense algal blooms, and even destructive
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effects on the organisms, such as phytoplankton cells being killed
by bacteria (32, 35, 59, 60).

Our results show that the limits of the chemotactic search for
small phytoplankton cells are sensitive to the details of motility
and sensing. Almost 40 y ago, Jackson hypothesized that the
gradients around small cells could not be sensed by a swimming
bacterium (19). However, recent observations, such as the afore-
mentioned M. adhaerens–Synechococcus interaction (20) or the
investigation of the chemotactic response of marine heterotrophic
bacteria to the exudates of virus-infected Synechococcus extending
to distances larger than 100 μm (61), indicate that this limit is not
universal. Our results provide the foundation that confirms that
micrometer-sized targets are generally detectable by chemotactic
bacteria and that chemotaxis can significantly reduce the search
time for such small cells, under certain conditions (Fig. 5).
Our findings also show that the exact position of the detection
boundary is sensitive to the search parameters, including bacterial
swimming speed, sensory timescale and chemotactic sensitivity,
phytoplankton size and leakage rate, and molecular diffusivity
of the chemoattractant (Fig. 4). Consequently, chemotaxis
toward phytoplankton may be more pervasive than previously
thought (62), yet questions related to its operational limits or
its quantitative benefit for bacterial growth may need to be
investigated for each specific system.

More work is needed to evaluate how close to the predicted
idealized chemotactic performance bacteria can operate. Agent-
based simulations of bacterial chemotaxis toward leaky phyto-
plankton cells could help to establish the distance to the idealized
limit as a function of bacterial phenotypes and chemotactic
strategy (i.e., the behavioral response elicited after the detection
of a gradient). It is known that different strategies exist (21, 63–
66), but the full extent of their diversity and their performance
in the context of chemotaxis toward phytoplankton is unclear.
Our work indicates that optimal strategies may depend on the
phytoplankton cell size—strategies that work well for large cells
will likely underperform for small ones and vice versa. Moreover,
experiments designed to assess how far from a phytoplankton
cell chemoattractants can be detected by bacteria could aid
in providing a stronger connection between the mathematical
notion of a sensory horizon (Fig. 2) and the empirically grounded
concept of the phycosphere (6, 67, 68), the biochemically rich mi-
croenvironment which surrounds individual phytoplankton cells.

Beyond bacterial chemotaxis, other forms of taxis and kinesis
are widespread in nature, from spatial chemotaxis in leuko-
cytes (69), through olfactory navigation in insects (70) to visual
feeding in fishes (71). Common features of natural search strate-
gies have been identified (72), and the predictions of generalized
frameworks for sensory searches (e.g., the effect of the search on
the stability of antagonistic and mutualistic interactions), depend
strongly on the size of the sensory region (73). Our results
show that the transition from ballistic to diffusive encounters
with the sensory region and the size-dependent limitations on
signal perception together impose tradeoffs that determine an
asymmetry in the performance of bacterial chemotaxis toward
phytoplankton. Due to their fundamental nature, similar trade-
offs may apply to a broader class of systems having different
sensory mechanisms. Investigating mathematical descriptions of
the SNR associated with different sensory systems (74) in terms
of the search parameters, particularly movement speed, reaction
time, and target size, may provide valuable insights into the
efficiency and limitations of other natural search strategies.

Our analysis is based on several simplifying assumptions. Phy-
toplankton exudates typically vary in composition and abundance

as a function of the organism’s identity, physiological conditions,
and life stage (4, 6, 51). We only model chemoattractants
through their diffusivity, but different bacteria are attracted
to distinct compounds with varying sensitivity (1, 75), many
chemoattractants can drive behavioral and metabolic shifts
in bacteria (76–79), and how the co-occurrence of multiple
compounds may impact chemotactic responses is still mostly
not understood (40, 80). Turbulence in the water column can
transport the microorganisms and deform the concentration
profiles around phytoplankton cells, enhancing or degrading
chemotactic performance in ways that strongly depend on
turbulent intensity, phytoplankton size, and bacterial speed
(81–84), although at the low intensities typical of the ocean (85),
we may expect its contribution to mostly enhance encounters.
Temporal fluctuations, from daily to seasonal cycles, drive
variations in cell abundances (86, 87), rescaling the search times
proportionally, as well as in leakage rates (88) and bulk concen-
trations of chemicals (89). All these factors and others, such as
predation (57), sinking (90, 91) and viral infections (92, 93),
contribute to shaping the microscale interaction landscape of the
ocean.

Conclusions

Using idealized models of phytoplankton leakage and bacterial
chemotaxis, we calculated upper bounds on the enhancement
in bacteria–phytoplankton encounters driven by chemotaxis
over random motility alone and studied how the enhancement
depends on the size of the phytoplankton and on bacterial
phenotypes. We found that bacterial chemotaxis offers low-
risk/low-gain performance in the search for large phytoplankton
but high-risk/high-gain performance in the search for small
phytoplankton. This fundamental tradeoff arises from
chemotactic encounters being limited by different mechanisms
at the two ends of the phytoplankton size spectrum. For large
phytoplankton, the limitation stems from the small steepness of
the gradients and the diffusive nature of bacterial motility, which
leads to moderate but consistent reductions in search times due to
chemotaxis. By contrast, for small phytoplankton, the limitation
stems from the small spatial extent of the gradients and the
ballistic motility of bacteria, which leads to large yet less reliable
reductions in search times due to chemotaxis. Furthermore, we
found that searching for small phytoplankton is more efficient
when bacteria swim more slowly and integrate the gradients over
longer sensory timescales. Overall, our results suggest that the
high-stakes nature of encounters with small phytoplankton is a
fundamental feature of chemotactic searches that may drive a
diversity of size-sensitive chemotactic strategies among marine
bacteria.

Materials and Methods

All the data shown in this work has been generated through custom Julia
(version 1.10) code, which is available on GitHub: (94). Project codes and data
were managed with DrWatson.jl (95). Numerical solution of the equations for the
evaluation of the sensory horizon S was performed with the Order0 method
(96) implemented in the Roots.jl library. Simulations for the Kolmogorov–
Smirnov model sensor made use of Distributions.jl (97) and HypothesisTests.jl.
Figures were realized with Makie.jl (98) and Inkscape. Interactive dashboards
were realized with Makie.jl (98).

Data, Materials, and Software Availability. Custom Julia code used to
generate data has been deposited in GitHub (94).
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