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Properties of microbial communities emerge from the interactions between
microorganisms and between microorganisms and their environment. At
the scale of the organisms, microbial interactions are multi-step processes
that are initiated by cell–cell or cell–resource encounters. Quantification and
rational design of microbial interactions thus require quantification of encoun-
ter rates. Encounter rates can often be quantified through encounter kernels—
mathematical formulae that capture the dependence of encounter rates on
cell phenotypes, such as cell size, shape, density or motility, and environ-
mental conditions, such as turbulence intensity or viscosity. While encounter
kernels have been studied for over a century, they are often not sufficiently con-
sidered in descriptions of microbial populations. Furthermore, formulae for
kernels are known only in a small number of canonical encounter scenarios.
Yet, encounter kernels can guide experimental efforts to control microbial
interactions by elucidating how encounter rates depend on key phenotypic
and environmental variables. Encounter kernels also provide physically
grounded estimates for parameters that are used in ecological models of
microbial populations. We illustrate this encounter-oriented perspective on
microbial interactions by reviewing traditional and recently identified kernels
describing encounters betweenmicroorganisms and betweenmicroorganisms
and resources in aquatic systems.
1. Introduction
Microbial communities impact human health [1], global biogeochemical cycles
[2,3] and plant growth [4]. Properties ofmicrobial communities, such as resilience,
coexistence and self-organization, emerge from the interactions between their
members and between members and the environment [5,6]. Studying this
emergence is challenging due to the complex and dynamic nature of the inter-
actions [5]. To tackle this complexity, the merger of experimental approaches
and mathematical modelling is key [5,6].

At the scale of the organisms, cell–cell and cell–resource encounters are essen-
tial first steps of microbial interactions [7]. Microbial degradation of particles of
organicmatter [8–10] or dispersed oil droplets [11] is initiated by bacteria–particle
or bacteria–droplet encounters. Aggregation of gut bacterial populations [12,13]
or colony formation by phytoplankton in the ocean [14,15] requires cell–cell
encounters. Horizontal gene transfer relies on bacteria–bacteria, bacteria–virus
or bacteria–DNA encounters [16]. Predation by protists on bacteria is an essential
element in aquatic microbial food webs controlled by flows generated by protists
to increase encounters with bacteria [17,18]. Marine snow formation by dead or
senescent phytoplankton cells, a key component of the ocean biological pump,
is driven by cell encounters [19–21]. Nutrient uptake [22] and exchange of metab-
olites [23] require diffusive encounters between cells and molecules. Additional
examples include mating [24], fertilization [25] and finding symbiotic partners
[26]. Quantifying encounter rates is thus an important step in quantifying
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Figure 1. One litre of seawater contains a myriad of particles of organic matter, phytoplankton and protozoa cells, bacteria, viruses and dissolved chemical com-
pounds. These different objects (drawn not to scale) can encounter one another, for example, due to fluid mixing, density mismatch, motility and diffusion.
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microbial interactions [27], and, we argue, offers an important
bridge between experimental investigations and mathematical
modelling. To illustrate this encounter-oriented perspective,
we here focus on encounters in aquatic environments
(figure 1). We highlight the dependence of encounter rates on
encounter mechanisms, microbial phenotypes and environ-
mental parameters, and show that, for representative values
of these parameters, the encounter rates for different encounter
mechanisms approximately converge at the micrometre scale
(figure 2). We discuss how this confluence of encounter rates
could be a driver of microbial diversity. We then describe
several examples of microbial interactions where estimating
encounter rates enables one to make predictions of the time-
scales characterizing the interactions, which is key to testing
hypotheses on mechanisms at play (figure 3). Throughout,
we discuss recent progress and open problems, highlighting
the potential and prolificacy of the encounter-centric approach
to the study of microbial interactions.
2. Quantification of encounter rates
Water in the oceans’ euphotic zone contains a plethora
of microorganisms and dissolved or particulate organic
matter, which continuously encounter one another due to dif-
fusion, advection by fluid flow, stirring by turbulence,
buoyancy and motility (figure 1). In 1 l of seawater, there are
tens of particles of organic matter larger than 100 μm [30,31],
a million phytoplankton cells larger than 5 μm [32] and
protozoa [33,34], a billion bacteria [35,36], 10 billion viruses
[35,36] and an often heterogeneous continuum of dissolved
chemical compounds.
These different objects (chemicals, organisms or particles),
when distributed homogeneously, encounter one another at a
rate that is predicted by the following equation:

encounter rate per unit volume ¼ GcAcB, ð2:1Þ

where cA and cB are the concentrations of the two objects
encountering each other. For example, A could be a species
of bacteria and B the viruses that infect it. Equation (2.1) cap-
tures the intuitive idea that the encounter rate is proportional
to concentrations (i.e. doubling the concentration of each
object results in a fourfold increase in encounter rates). The
factor G is called the encounter kernel. The encounter kernel
has units of volume per time and represents the volume that
a pair of encountering objects sweep relative to each other
per unit time. Our focus here is on how the encounter kernel
depends on the mechanisms that bring the two objects
together, the characteristics of the objects (e.g. organismpheno-
types) and the environmental conditions. Once the encounter
kernel is known, equation (2.1) enables one to predict the
encounter rate for given concentrations of the two objects, cA
and cB. Equation (2.1) has been widely applied to study rates
of chemical reactions (compound–compound encounters)
[37], bacterium–virus adsorption [38], nutrient uptake (cell–
compound encounters) [22], marine snow formation (cell–cell
encounters) [19] and predator–prey dynamics [39]. For clarity,
we stress that equation (2.1) quantifies the encounter stage
of an otherwise multi-step interaction process. For example,
equation (2.1) can predict encounter rates betweenphytoplank-
ton cells but it does not determine whether or not cells stick
after an encounter, and hence aggregate, or it can predict
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Figure 2. Even in the simplest encounter models that represent objects (cells, particles, compounds) as identical spheres (a), the encounter rates strongly depend on
encounter mechanisms, cell phenotypes and environmental conditions (b). The confluence of encounter rates at micrometre scale (shaded area, note the constant
blue curve), analogous to the confluence of energy scales at which molecular machines operate [28], illustrates the challenge of analysing microbial interactions and
could contribute to microbial diversity.
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diffusive uptake of signalling molecules (e.g. in quorum sen-
sing) but it does not capture the regulatory response of cells.

Before moving to specific encounter mechanisms, we note
that equation (2.1) represents the encounter rate between any
object Awith any object B. For example, equation (2.1) predicts
that an experimentalist counting all encounters between
bacteria (of concentration cbac) and phytoplankton (of concen-
tration cphy) during time T in an observation domain of volume
V should obtain, on average, GcbaccphyVT encounters. An
important variant of equation (2.1) concerns the perspective
of an individual object: any given individual bacterium
encounters phytoplankton cells with rate Gcphy and vice
versa, any given phytoplankton cell encounters bacteria with
rate Gcbac. We finally note that equation (2.1) is deterministic
and has no dependence on space: it is thus limited to well-
mixed, spatially homogeneous systems where each object is
present at high copy number—we discuss generalizations to
stochastic and heterogeneous systems later.
3. Encounter mechanisms in aquatic systems
Each mechanism that generates encounters, such as diffusion,
fluid flow, buoyancy and motility (figure 1), is characterized
by a different encounter kernel. As a simplification, we now
make (and later will relax) the spherical cell assumption,
namely we model the objects A and B as being spherical
and all having the same radius within each species, rA and
rB, respectively. We can then obtain mathematical expressions
for the encounter kernels linked to different mechanisms.

Diffusive encounters are then characterized by the kernel
[40,41]

Gdiff ¼ 4pðDA þDBÞðrA þ rBÞ, ð3:1Þ
where DA and DB are the thermal diffusion coefficients of the
objects. From the Stokes–Einstein relation, DA = kBT/(6πμrA),
where kB is the Boltzmann constant, T is the temperature
and μ is the dynamic viscosity of the fluid (typically water,
in which case μ = 1 mPa s at T = 20°C). Equation (3.1) is
based on the assumption that objects act as perfect absorbers
and it neglects the initial transient encounters due to the
buildup of boundary layer [39–41]. The impact of imperfect
absorption has been studied in great detail in the classic
paper by Berg & Purcell [38], where they showed that only
a small fraction of the surface of an object needs to be absorb-
ing in order achieve a nearly optimal performance.

Encounters in turbulence are characterized by [42]

Gturb ¼ 1:3ðrA þ rBÞ3
ffiffiffi
e

n

r
, ð3:2Þ

where e is the kinetic energy dissipation rate characterizing
turbulence intensity and ν is the kinematic viscosity of the
fluid (ν = μ/ρ, where ρ is the fluid density; ν = 1 mm2 s−1 for
water at T = 20°C). Equation (3.2) is valid for objects smaller
than the so-called Kolmogorov scale, which in the ocean is
typically larger than 1mm [43].

The kernel for cells moving vertically along the water
column, for example, due to buoyancy, is [44]

Gbuoy ¼ pðrA þ rBÞ2jUAðrAÞ �UBðrBÞj, ð3:3Þ

where U(r) is the vertical velocity, which in general differs
between the objects A and B, causing differential settling.
The vertical velocity can be positive (rising) or negative (sink-
ing), and typically depends on the radius r, density offset Δρ
with respect to the surrounding fluid, gravity g and dynamic
fluid viscosity μ, as described by Stokes’ law: U(r) =
2Δρgr2/(9μ) (note that the sinking of marine particles has
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Figure 3. Encounters of cells with resources and other microorganisms control the timescales of viral infections of bacteria, predation by protists on bacteria, marine
snow formation by coagulation of phytoplankton cells following a phytoplankton bloom, and bacterial colonization of sinking marine snow, among many other
microbial interactions. (a) Bacterium–virus encounters are driven by viral diffusion and bacterial swimming. (b) Bacterium–protist encounters result from the swim-
ming of protists and the feeding currents created by beating of their flagella. (c) Phytoplankton–phytoplankton encounters are driven by buoyancy and turbulent
mixing. The colour code shows intense vorticity structures visualizing locally swirling regions in the turbulent flow. (d ) Bacterium–particle encounters result from the
sinking of the particle, bacterial swimming and flow-induced reorientation of the bacterial swimming trajectory. (c) Reproduced from [29] ( published under CC BY-
NC-ND 4.0 license). (d ) Adapted from [9] ( published under CC BY 4.0 license).
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been found to obey more closely empirical relations than
Stokes’ law [45]).

For motile cells, all moving in straight lines at the same
speed Uswim but in random directions, the kernel reads [44]

Gmot ¼ 4
3
pðrA þ rBÞ2Uswim: ð3:4Þ

When the speeds are unequal between A and B, the kernel
becomes Gmot ¼ pðrA þ rBÞ2ð3U2

A þU2
BÞ=ð3UAÞ with the con-

dition UA≥UB [46,47]. When the speeds are randomly
distributed, rather than being constant, the kernel is known
in the case of Maxwell’s distribution (i.e. each velocity
component is normally distributed with zero mean). In that
case, with distribution means �UA and �UB, the kernel is

Gmot ¼ pðrA þ rBÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�U2
A þ �U2

B

q
[44,47].

For motile cells, we note that equation (3.4) and its var-
iants assume straight-line, ballistic motion. When cells
reorient after travelling for some typical distance λA and λB,
equation (3.4) holds as long as λA,B≫ rA,B [39]. That is, the
encounter process must appear ballistic from the perspective
of encountering cells (run length greater than cell size).
When this condition is violated, the encounters become
increasingly diffusive [48–50] and the kernel is described by
equation (3.1), with thermal diffusion coefficients replaced
by the effective diffusion coefficients associated with the
cells’ active motion [51,52].

Not only are kernels specific to each encounter mechan-
ism, but they also strongly depend on phenotypes of cells
or characteristics of particles, and environmental conditions
(figure 2). To illustrate these dependencies, we set rA = rB = r
in equations (3.1)–(3.4) to focus, in the next four paragraphs,
on the simplest case where all objects (cells or particles) have
the same size.

Diffusive encounters between equal-sized spheres in water
do not depend on cell size, as shown by combining equation
(3.1) with the Stokes–Einstein relation, which yields
Gdiff ¼ 8kBT=ð3mÞ. Since encounter rates for all other encounter
mechanisms decrease as the object size decreases, diffusive
encounters rule the submicrometre world, and are still impor-
tant for micrometre-sized objects (blue line in figure 2b).
Interestingly, diffusion in complex fluids, such as cytoplasm or
human mucus, is scale dependent [53,54]. Viscosity in such
environments increases rapidly with the size of the diffusing
object, which can suppress diffusive encounters for larger
objects, making them relevant only at the nanometre scale
(broken blue line in figure 2b). Suppression of diffusion in
mucus is a first-line protectionmechanismagainst foreignpatho-
gens [53], in bacterial extracellular polymeric substances it can
protect bacteria from external deleterious compounds [55] and
has been observed outside phytoplankton cells [56].
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Encounters in turbulence between equal-sized spheres
depend strongly on size, as seen from the cubic scaling
Gturb ¼ 10:4r3

ffiffiffiffiffiffiffi
e=n

p
(pink line in figure 2b). At intermediate

(e ¼ 10�6 Wkg�1) and strong (e ¼ 10�4 Wkg�1) turbulence
intensities [43], turbulence dominates diffusion for encoun-
ters between objects with size above 1 μm and 0.5 μm,
respectively.

Equal-size spherical objects with the same density offset
with respect to the surrounding fluid do not encounter one
another because of differential settling (i.e. Gbuoy ¼ 0), because
they all settle or rise at the same speed. Instead, we consider an
example where the cells are split into two equal subpopu-
lations: neutrally buoyant (stationary) cells and cells with
density offset Δρ. This scenario is relevant, for example, for
phytoplankton cells that can actively control their buoyancy
[14] and whose subpopulations may thus have different buoy-
ancy levels. Using Stokes’ law and including a factor of 1/2 to
account for the two half-populations, the kernel becomes
Gbuoy ¼ 4pr4Drg=ð9mÞ (green line in figure 2b). Due to the
strong dependence on the size of an object (quartic scaling),
whenever differential buoyancy is established, it may be the
dominant encounter mechanism for large (greater than
100 μm) objects.

Finally, swimming in straight lines generates encounters
that scale with the square of object size, Gmot ¼ 16pr2Uswim=3
(yellow line in figure 2b), and may be the dominant encounter
mechanism at the micrometre scale, because it induces large
relative velocities between encountering objects. For example,
at the scale of a micrometre, unrealistically strong turbulence
or density offsets are needed to produce relative speed of
the order of tens of micrometres per second. We note that the
swimming speeds of microorganisms can vary by orders of
magnitude, and depend on a range of factors including cell
size, shape, number of flagella (or cilia), actuation frequencies,
fluid temperature, and viscosity and metabolic state of the cell,
among others [57–60]. In figure 2, we captured some of this
variability by focusing on two values, which can be broadly
seen as characteristic of bacteria (Uswim = 50 μm s−1) and dino-
flagellates (Uswim = 500 μm s−1) [60] (even though each group
of organisms itself exhibits large variations).
4. Confluence of encounter mechanisms
Figure 2 shows an interesting feature of encounter rates: a
convergence of the magnitude of multiple encounter mechan-
isms at the size of an object in the range of 1 μm (shaded
area). This confluence of encounter rates bears conceptual
analogy with the confluence of the magnitude of multiple
interaction energies (thermal, chemical, electrostatic, bend-
ing) at the size of an object in the nanometre range [28]. For
that case, since molecular machines operate at the nanometre
scale, it has been proposed that this confluence may be
responsible for the rich functionality of molecular machines:
the confluence enables conformational changes, dissolution
of bonds, transport of charges, which in turn are the basis
of macromolecular functions such as DNA reading and
copying or action of molecular motors [28].

Following this analogy, we propose that it might be
plausible that the large microbial diversity observed in nature
[61,62] could be in part driven by the confluence of encounter
mechanisms at the scale of individual microorganisms
(approx. 1 μm). This specifically would mean that different
microorganisms can achieve the same function (an encounter
with a given entity, e.g. a resource or another microorganism)
through different encounter mechanisms. This would in turn
require different adaptations (e.g. motile versus non-motile
cells; smaller versus larger cells) that contribute to microbial
diversity. Species diversity and coexistence are known to be
promoted by environmental fluctuations [63], competition
[64], predation [65] and coevolution [66] (see also discussion
in [7,67]). The confluence of encounter mechanisms at the
microbial scale adds a possible additional driver of diversity:
since microbial interactions can be mediated bymany different
encounter mechanisms, rather than being dominated by a
single one, this multiplicity may facilitate diverse life strategies
of microbes, eventually promoting diversity. At a coarse
level, this is already visible in the dichotomy between copio-
trophs, which often encounter resources by motility, and
oligotrophs, which are non-motile and rely on diffusive
encounters [68,69]. A challenging evolutionary experiment to
test the impact of the confluence on microbial diversity could
include monitoring microbial diversity in two mesocosms,
each seeded with identical initial microbial populations, but
where one or more encounter mechanisms are suppressed in
one of the mesocosms. For example, we expect that decreasing
turbulence by suppressing mixing or eliminating motility
using non-motile mutants in the starting population will
decrease diversity in thatmesocosm relative to the control. Ulti-
mately, more work is needed to test the hypothesis that the
confluence of encounter mechanisms can contribute to drive
microbial diversity and the extent to which this may occur.
5. Microscale interactions are primed by
encounters

We now describe several important examples of microbial
interactions where quantifying encounter rates allows one
to put lower bounds on the timescales of the interactions
(figure 3). Throughout, we also illustrate the limitations of
the simple kernels in equations (3.1)–(3.4).

Bacterialmortality is controlledbyviral infections (figure 3a)
and predation by protists (figure 3b) [17]. Owing to the small
size of viruses, viral encounters with bacteria are diffusive in
nature and can thus be modelled using equation (3.1) [38].
With the values rbac = 1 μm, rvir = 100 nm, μ = 1 mPa s and T =
293 K, one obtains from equation (3.1) the kernel
G ¼ 32:6mm3 s�1. At typical concentrations cbac = 106 ml−1 and
cvir = 107 ml−1 of bacteria and viruses [36], respectively, this
encounter kernel predicts that any given bacterium encounters
one virus every 1=ðGcvirÞ � 50min, whereas any given virus
encounters onebacteriumevery 1=ðGcbacÞ � 8:5 h. If the bacteria
are motile, that further increases the diffusive encounter rate by
a multiplicative dimensionless factor called the Sherwood
number, which in the bacterium–virus case can increase the
encounter rate up to twofold under typical conditions [38].

The far less abundant but larger protozoa (e.g. cpro =
103 ml−1 for heterotrophic flagellates [33,34]) may swim or
create feeding currents through the beating of their flagella to
graze on bacteria. Flows generated by beating flagella can
enhance diffusive nutrient uptake, as described by the squir-
mer model [70,71], but, to the best of our knowledge, no
formulae for encounter kernels exist to describe the capture
of bacteria by such flows. Recent work has estimated the
encounter kernel (also called clearance rate in the case of
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predation) from experimentally measured time-averaged
flow fields for different flagellated species to be in the
range G � 102–106 mm3 s�1 for organisms in the size range
about 5−100 μm [18]. This estimate assumed non-motile
bacteria (i.e. bacteria were modelled as tracer particles). As a
result, taking G ¼ 104 mm3 s�1 shows that any given protist
encounters one bacterium every 1=ðGcbacÞ � 2min, generally
consistent with the observed ingestion rates of 2–20 bacteria
per protist per hour [33]. Similarly, any given bacterium
encounters one protist every 1=ðGcproÞ � 1 d, which is consist-
ent with the typical lifespan of a bacterium in the ocean [72].
The fact that a bacterium encounters a virus thirty times
more frequently compared to encountering a protist should,
however, not be taken to imply that mortality due to viral
infection is more important than mortality due to protistan
grazing, and is rather associated with the fact that viruses
have typically a narrowhost range [73] (making our calculation
above an overestimate) whereas protists are often omnivorous.
The two pathways of bacterial mortality are likely equally
important [17].

Encounters between phytoplankton cells following a phy-
toplankton bloom (figure 3c) determine the formation of
marine snow, which fuels the ‘biological pump’, the vertical
export of carbon to the deep ocean that represents one of
the climatically most important carbon fluxes in the ocean
[2]. This coagulation process has been traditionally modelled
as encounters between spherical cells sinking, often in the
presence of turbulence, through equations (3.2) and (3.3),
while neglecting diffusive encounters owing to the large
size of phytoplankton cells [19,74]. On the other hand, phyto-
plankton come in a variety of shapes [75] with a majority of
them being elongated [76]: to account for this, in recent work
we have generalized equations (3.2) and (3.3) to the case of
elongated cells [20,21,29], resulting in several new predictions
regarding the timescales and nature of the bloom clearance
dynamics. First, that work showed that identical buoyant
elongated cells, owing to their orientation-dependent sink-
ing/rising velocity, can encounter each other frequently
even in the absence of turbulence [21], something that identi-
cal spherical cells cannot do because they all sink or rise at the
same speed (as can be seen by setting rA = rB in equation (3.3),
leading to UA(rA) =UB(rB)). Second, in a quiescent fluid a
generalization of equation (3.3) to dissimilar elongated cells
revealed that the formation of elongated aggregates is oscil-
latory in nature, with periodic bursts of several days in the
concentration of aggregates of different sizes, whereas spheri-
cal aggregates reach a time-independent steady state [20].
Third, including the effect of turbulence in the case of identi-
cal elongated cells [29] revealed that elongation can increase
encounter rates in turbulent flows by an order of magnitude
as compared to spherical cells. Consequently, the formation
of aggregates may be accelerated by a similar factor, provid-
ing a potential explanation for the rapid clearance of blooms
of elongated or chain-forming phytoplankton species.
Encounter kernels for dissimilar elongated cells in turbulence
and for oblate cells in turbulence remain currently unknown.

Once marine snow particles have formed by coagulation,
they sink and thereby export carbon to the deep ocean.
The efficiency of this process is controlled by bacteria, which
colonize and degrade the sinking particles: the rate of bac-
teria–particle encounters is here relevant for determining how
rapidly particles get colonized by new bacteria (figure 3d)
[7,10,77]. Consider a particle that has sunk below the mixing
layer and is thus not subject to turbulent mixing. For non-
motile and spherical bacteria (Uswim = 0), and in the typical
case where the particle radius rp is much larger than the
radius of the bacterium rbac (rp≫ rbac), one cannot apply the
buoyant kernel in equation (3.3) directly, because sinking par-
ticles create a flow around them that can advect bacteria along
the flow streamlines (shaded surfaces in figure 3d). When the
diffusivity of bacteria is neglected (Dbac = 0), bacteria strictly
follow the fluid streamlines of the flow created by the sinking
particle and bacteria–particle encounters are then driven
solely by ‘direct interception’, characterized by the kernel
G ¼ 1:45pr2bacUsink [78], where Usink is the sinking speed of the
particle. Interestingly, this kernel depends only on rbac and the
sinking speed Usink and does not depend on the particle size
(as long as rp≫ rbac). When the diffusivity of bacteria is impor-
tant (Dbac > 0), the encounter process can be described by a
variant of equation (3.1) given by G ¼ 4pDbacrpSh, where the
impact of the fluid flow induced by the sinking particle on the
encounter process is encoded in the Sherwood number Sh, a
dimensionless parameter that is a function of the Péclet
number Pe = rpUsink/Dbac [22]. As an aside demonstrating the
need for more work on encounter kernels, we mention that,
for large Péclet numbers (Pe→∞), it is not clear to us how the
Sherwood-corrected diffusive kernel reduces to the interception
kernel since the two predict different asymptotic limits. Note
that the diffusive kernel also applies to encounters between
viruses and swimming bacteria, as we mentioned above, but
the Péclet number is moderate in this case (Pe≈ 3).

For motile bacteria (Uswim > 0), the encounter process
with particles depends sensitively on the interaction between
bacterial swimming, bacterial shape and fluid flow induced
by the particle. Motility can enhance effective bacterial diffu-
sivity by up to three orders of magnitude as compared to
non-motile bacteria, thus increasing the encounter rate by
the same factor [7,77]. However, approximating the encounter
process as diffusive is only valid as long the as the
bacterial run length λ is much smaller than the particle
radius (λ≪ rp). Here, λ refers to the typical length of a seg-
ment of bacterial trajectory between subsequent tumble or
reorientation events. For small sinking particles, which are
also most abundant [30], this condition breaks down and
the encounter process is then ballistic, rather than diffusive.
One may then be tempted to apply equation (3.4) or its var-
iants. However, the classical ballistic kernels assume straight-
line trajectories, while the fluid shear induced by the sinking
of the particle can bend the trajectories by reorienting motile
bacteria as they approach the particle, and this bending
strongly depends on the bacterial shape. As a result, shear
and shape exert a strong control on encounters in the ballistic
range [9]. Specifically, for elongated bacteria, shear can
enhance encounters with slowly sinking particles (Usink≈
Uswim) via redirecting bacteria to the leeward (downstream)
side of the particle, but almost entirely prevents motile bac-
teria from attaching to fast sinking particles (Usink≫Uswim)
via hydrodynamic ‘screening’ [9].
6. Tactic behaviour
So far, we focused on examples of encounters where behav-
ioural responses of organisms were either not important or
neglected; however, one of the big open challenges in the
study of encounter rates is the incorporation of behavioural
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responses in the description of the encounter process [27].
Motile organisms often do not move randomly, but display
tactic behaviours, i.e. they tune their motility in response to
local environmental stimuli, which can be of chemical or
hydrodynamic nature [7,79]. For example, chemical com-
munication was found to be key for mate finding in
copepod species [80]. Female individuals leave pheromone
trails behind, which can be sensed and followed by male indi-
viduals. In this case, an approximate kernel reads G ¼ U?

ms,
where σ is the effective cross-sectional area of the trail,
s/ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LDp=Uf

p
[81] (with Dp pheromone diffusivity, Uf

female swimming speed and L trail length), and U?
m is the

projection of the male swimming velocity perpendicular
to the trail. Trail-tracking was observed to increase male–
female encounters by factors of 20–80 compared to an
unbiased random search [7,82].

Another well-known example of behaviour that impacts
encounters is bacterial chemotaxis, the ability of bacteria to
follow chemical gradients [83,84]. Using chemotaxis, cells
are able to bias their motion towards regions where the con-
centration of attractant compounds is higher, thus increasing
encounters with the sources of such compounds, such
as leaking or lysed phytoplankton cells [26,85] or marine snow
particles [86]. Extending encounter kernels through parameters
that describe chemotactic behaviour—and behaviour in gen-
eral—and how it interacts with the fluid flow is mostly an
open challenge. Recent progress inmodelling sperm chemotaxis
towards eggs in marine invertebrates points towards general
trade-offs between chemotactic behaviour and the distortion of
concentration fields of chemoattractants into filaments [87].
7. Stochasticity and heterogeneity
Together with the important modifications linked to behav-
ioural responses, the description of encounters in terms of
equation (2.1) also finds limitations when considering a low
numbers of objects, or heterogeneity in the distribution of
objects, and needs to be adapted appropriately. The hetero-
geneity is particularly important in spatially structured
environments, such as soil [88] or human gut [89].

Equation (2.1) is deterministic and applicable towell-mixed
systems. As described earlier, an experimentalist counting
all encounters between objects A and B during time T in an
observation domain of volume V should obtain, on average,
GcAcBVT encounters. However, if the number of encounters
that have been observed is small, stochastic effects must be
taken into account [66,90]. Specifically, the deterministic
description of equation (2.1) holds as long as

VT � 1
GcAcB

, ð7:1Þ

that is,many encountersmust occur in the ‘space–time volume’
VT. If this condition is violated, the observed number of
encounters will fluctuate around the mean, with fluctuations
of the order of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GcAcBVT

p
(see the chemical Langevin equation

in [90] and algorithms therein to simulate stochastic encoun-
ters). Stochasticity can have major effects on cell interactions
as illustrated by the stochastic ‘Kill the Winner’ model [66],
whereby stochastic effects can lead to the total extinction of
interacting predator–prey populations.

Spatial heterogeneity in the distribution of objects (chemi-
cals, cells, particles) can create interaction hotspots [69].
Spatial heterogeneity can be accounted for in equation (2.1)
by promoting concentrations to be functions of position: the
encounter rate is then equal to GcAðxÞcBðxÞ, where x is
the spatial coordinate. Interaction hotspots arise due to the
nonlinear dependence on cell concentrations. For example,
constraining the same number of objects to occupy only
half of an observation domain of volume V locally quadru-
ples the encounter rate in the half-occupied domain, and,
in the full domain, doubles the total encounter rate as com-
pared to the uniform distribution. We refer the reader to
Stundzia & Lumsden [91] for numerical methods to handle
both stochastic and spatial effects.
8. Conclusion
In summary, encounter kernels are mathematical formulae
that quantify the dependence of encounter rates between
members of microbial ecosystems on cell phenotypes and
biophysical properties, such as cell size, shape, density, diffu-
sivity, motility patterns and environmental parameters, such
as turbulence and fluid viscosity. Once the appropriate
kernel together with cell densities are specified, equation
(2.1) estimates encounter rates and thus the timescales at
which interactions occur. While kernels have been studied
for over a century, they were typically derived to model phys-
ical processes, such as collisions between molecules in gases,
diffusive aggregation of colloids or rain formation. The appli-
cability of physics-based kernels to faithfully represent the
complexity of microbial interactions is thus limited, as exem-
plified by the impact of cell elongation on encounters,
prompting further fundamental research on how cell pheno-
types impact encounter rates. Such an encounter-centric
approach should be particularly beneficial for the quantifi-
cation of the rates of horizontal gene transfer, since all
major horizontal gene transfer pathways are primed by
encounters. Similarly, while often overlooked, kernels also
provide concrete estimates of the nonlinear coupling coeffi-
cients in Lotka–Volterra type ecosystem models [6]. In these
models, kernels can help to significantly constrain the
otherwise vast space of the nonlinear interactions. Finally,
kernels can inform the rational design of microbial inter-
actions by providing guidance on how to suppress or
enhance the interactions by eliminating or promoting encoun-
ters, providing a powerful link between experimental and
modelling efforts [5].
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