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Abstract

Marine bacterial diversity is immense and believed to be driven in part by trade-offs in meta-

bolic strategies. Here we consider heterotrophs that rely on organic carbon as an energy

source and present a molecular-level model of cell metabolism that explains the dichotomy

between copiotrophs—which dominate in carbon-rich environments—and oligotrophs—

which dominate in carbon-poor environments—as the consequence of trade-offs between

nutrient transport systems. While prototypical copiotrophs, like Vibrios, possess numerous

phosphotransferase systems (PTS), prototypical oligotrophs, such as SAR11, lack PTS and

rely on ATP-binding cassette (ABC) transporters, which use binding proteins. We develop

models of both transport systems and use them in proteome allocation problems to predict

the optimal nutrient uptake and metabolic strategy as a function of carbon availability. We

derive a Michaelis–Menten approximation of ABC transport, analytically demonstrating how

the half-saturation concentration is a function of binding protein abundance. We predict that

oligotrophs can attain nanomolar half-saturation concentrations using binding proteins with

only micromolar dissociation constants and while closely matching transport and metabolic

capacities. However, our model predicts that this requires large periplasms and that the

slow diffusion of the binding proteins limits uptake. Thus, binding proteins are critical for oli-

gotrophic survival yet severely constrain growth rates. We propose that this trade-off funda-

mentally shaped the divergent evolution of oligotrophs and copiotrophs.

Author summary

Marine bacteria utilize carbon as a building block and an energy source and thus exert an

important control on the amount of carbon that is sequestered in the ocean versus

respired into the atmosphere. They use a spectrum of strategies to consume carbon: while

copiotrophic bacteria dominate in nutrient-rich environments, oligotrophic bacteria

dominate in nutrient-poor environments and are typically smaller, nonmotile, and slower

growing. Yet the paragon oligotroph SAR11 is the planet’s most abundant organism.
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Despite this, most of our understanding of bacteria derives from research on copiotrophs.

Here we use molecular-level models to understand how an oligotroph’s physiology

enables it to outperform copiotrophs in nutrient-poor but not in nutrient-rich environ-

ments. We contrast copiotrophs’ prevalent method of sugar transport with oligotrophs’

reliance on binding proteins, which trap nutrients in the periplasm. Binding proteins

allow cells to attain affinities that are much higher than the transport proteins’ intrinsic

affinities. However, our model predicts that attaining such high affinities requires large

periplasms with high abundances of the slowly diffusing binding proteins, which pre-

cludes high growth rates. By quantifying the benefits and costs of binding proteins, we

provide a mechanistic explanation for the divergent evolution of oligotrophs and

copiotrophs.

Introduction

Approximately half of global carbon fixation occurs in the ocean [1]. The fate of that carbon is

governed by diverse species of heterotrophic bacteria [2–4] that differ in their carbon prefer-

ences and uptake rates [5–7]. Yet we lack a fundamental understanding of how and why spe-

cies’ metabolic strategies differ, an understanding needed to predict how a changing climate

will affect rates of carbon flux in the ocean [8].

An important driver of species’ differentiation is nutrient availability, leading to a spectrum

of microbial lifestyles: at opposite ends, copiotrophs dominate in nutrient-rich environments,

whereas oligotrophs dominate in nutrient-poor environments [9–11]. Prototypical copio-

trophs, like Vibrios, exhibit a feast-and-famine lifestyle and swim to colonize sporadic, nutri-

ent-rich patches and particles [12,13]. They reach volumes greater than 1 μm3 and doubling

times less than one hour [14]. Conversely, the abundant oligotrophs of the SAR11 clade are

nonmotile and free-living [15] and have volumes smaller than 0.1 μm3 and doubling times

greater than 5 hours [14]. Although copiotrophs typically attain higher doubling rates and

have larger per cell biomass, the slow-growing oligotrophs comprise the majority of marine

bacterial biomass [16,17]. Despite this, most of our understanding of bacterial metabolism

derives from research on copiotrophic-like bacteria, which are easier to culture [18].

Genomic analyses suggest that the divergent phenotypic traits of copiotrophs and oligo-

trophs are correlated with their suite of genes for nutrient transport [14,19–21]. Prototypical

copiotrophs have many genes for phosphotransferase systems (PTS) used to uptake specific

sugars [14,22]. In contrast, prototypical oligotrophs, like SAR11 and Sphingopyxis alaskensis,
lack PTS [14,23] and instead rely heavily on ATP-binding cassette (ABC) transport systems,

which are comprised of a transmembrane transport unit and a periplasmic substrate-binding

protein. ABC transport systems have higher affinities than PTS [24,25]. Although it has long

been held that the high affinity of ABC transport is a consequence of high-affinity binding pro-

teins [26,27], Bosdriesz and others recently suggested that the affinity of ABC transport is a

function of binding protein abundance and, specifically, that ABC transport confers high affin-

ity only when the abundance of binding proteins exceeds that of transport units [28]. Thus, oli-

gotrophs’ high abundances of binding proteins may explain their ability to grow in low

nutrient conditions [19,29]. However, it is not understood why oligotrophs such as SAR11

cannot achieve higher grower rates in nutrient-rich conditions or why typical copiotrophs—

which do, in fact, possess many ABC transport systems—cannot achieve higher affinities in

nutrient-limited conditions [9].
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To understand the metabolic constraints governing the dichotomy between the oligotro-

phic and copiotrophic lifestyles, we develop molecular-level transport and cellular proteome

allocation models to compare the performance of ABC transport and PTS. We derive a

Michaelis–Menten approximation of ABC transport kinetics that predicts that the specific

affinity of transport is proportional to binding protein abundance when the binding protein to

transport unit ratio is sufficiently high. We thus find that ABC transport allows independent

tuning of affinity and maximal uptake rate so that cells can achieve high affinities while closely

matching transport and metabolic capacities. We thus predict that an oligotroph can attain a

half-saturation concentration over a thousand-fold smaller than its binding protein’s dissocia-

tion constant. However, attaining this high affinity requires a great abundance of binding pro-

teins, which diffuse slowly and require large periplasms. Consequently, the reliance on binding

proteins to achieve high affinity precludes high growth rates. Moreover, the ability of ABC

transport to achieve high affinities while matching metabolic capacity makes metabolic imbal-

ances unlikely and thus mechanisms for handling sudden nutrient up-shifts typically unneces-

sary, which may explain the toxicity of high-nutrient conditions to SAR11. Together, these

findings provide a mechanistic explanation for the divergence of the copiotrophic and oligo-

trophic lifestyles, as the consequence of trade-offs between PTS and ABC transport.

Results

The specific affinity of ABC transport is a function of both transport and

binding protein abundance

To contrast the nutrient acquisition strategies of PTS and ABC transport systems, we present

models of both, which show that, whereas the half-saturation concentration of PTS is an

intrinsic property of the transporter, the half-saturation concentration of ABC transport is a

function of binding protein abundance [28]. A PTS is used for the cytoplasmic uptake of a spe-

cific sugar and modifies the sugar once it enters the cytoplasm by binding the sugar to a phos-

phate group. PTS uptake kinetics can be described by the canonical model for transport [30].

It describes transport as a two-step reaction, in which (i) the periplasmic substrate (Sp) binds

to the membrane-bound transport unit (T) with rate constant k1 to form a bound complex

(T:S), and (ii) the substrate is translocated irreversibly into the cytoplasm with rate k2 (Sc) (Fig

1 and Section A in S1 Appendix). Using mass-action kinetics, we find that the cytoplasmic

uptake rate (the rate at which Sp is converted to Sc) for PTS at steady-state is

vc;PTS ¼ k2 T:S½ � ¼ k2½T�total
½S�p

KT þ ½S�p
; ð1Þ

where KT = k2/k1 is the transport unit dissociation constant and [T]total is the abundance of

membrane-bound transport units divided by the volume of the periplasm. (Note that we here

express all transport rates in terms of change in periplasmic concentration per time. We use

the conversion factor fp/(1−fp) to obtain the uptake rate in terms of change in cytoplasmic con-

centration, where fp is the fraction of the cell’s volume comprised of the periplasm. See Section

D.3 in S1 Appendix.) The solution in Eq 1 has the classic Michaelis–Menten form of nutrient

transport [31], with maximal uptake rate Vmax proportional to [T]total and half-saturation con-

stant KM equal to KT (Fig 2).

In contrast to PTS, the kinetics of ABC transport does not follow the classic Michaelis–

Menten form [28]. ABC transport uses binding proteins (BP) in the periplasm that scavenge

for incoming nutrients. These binding proteins, when in complex with the substrate, bind to

membrane-bound transport units that require ATP to translocate the substrate from the

PLOS COMPUTATIONAL BIOLOGY Marine oligotrophs versus copiotrophs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009023 May 19, 2021 3 / 21

https://doi.org/10.1371/journal.pcbi.1009023


periplasm into the cytoplasm [32–34]. Similar to previous models of transport by binding pro-

teins [27,28], we describe ABC uptake by extending the PTS model to account for a four-step

reaction: (i) the substrate–binding protein complex (S:BP) is formed by a reversible reaction

with association rate k00f and dissociation rate k00r, (ii) the bound complex of substrate and

binding protein (S:BP) binds with rate constant k01 to the membrane-bound transport unit (T)

to form a bound complex (T:S:BP), (iii) the substrate is translocated irreversibly into the cyto-

plasm (Sc) with rate k02, and (iv) the transport unit and binding protein dissociate with rate k03
(Fig 1). At steady state, we obtain a system of four equations that can be solved exactly for the

cytoplasmic uptake rate for ABC transport, vc,ABC, in terms of change in periplasmic concen-

tration per time as a function of the concentration of free substrate in the periplasm, [S]p (Sec-

tions A.2 and D.3.2 in S1 Appendix):

vc;ABC ¼ k02
k0

3

k0
2
þ k0

3

� �

½T�total
½S:BP�

K 0T þ ½S:BP�
; K 0T ¼

k02k03
k01ðk02 þ k0

3
Þ
; ð2Þ

S:BP½ � ¼
½S�p½BP�

KD þ k01½T�=k00f
; KD ¼

k00r

k00f
; ð3Þ

½BP� ¼ ½BP�total � ½S:BP� � ð1þ k0
2
=k0

3
Þ½T:S:BP�; ð4Þ

Fig 1. Schematic of transport systems. For a nutrient to enter the cytoplasm, a transport unit bound to the inner

membrane must expend energy to modify the substrate or translocate the substrate against a concentration gradient.

For transport of a sugar by a phosphotransferase system (PTS), the sugar binds directly to the transport unit, and a

cascade of specific proteins phosphorylate that particular sugar. For transport of a substrate by an ATP-binding

cassette (ABC) transport system, binding proteins in the periplasm first scavenge for and store the substrate in the

periplasm. When bound to substrate, a binding protein can then bind to a membrane-bound transport unit, which

uses ATP to translocate the substrate. While a single type of binding protein may be able to bind to different substrates,

it can bind to only a single, corresponding type of transport unit. To limit the number of free parameters when

modeling these two transport systems, we use a simple model of PTS that assumes that binding of the substrate to the

transport unit is irreversible. We extend the model for ABC transport to account for the reversible binding of the

substrate to the binding protein and the dissociation of the binding protein from the transport unit after translocation.

https://doi.org/10.1371/journal.pcbi.1009023.g001
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½T� ¼ ½T�total � ð1þ k0
2
=k0

3
Þ½T:S:BP�: ð5Þ

This model is a simplification of the ABC transport model developed by Bosdriesz and oth-

ers [28]; in contrast to their model, our model assumes that translocation as well as the associa-

tion and dissociation of binding protein and transport unit proceed irreversibly and thus has

three fewer free parameters. Yet we find that our model provides a good fit for the well-charac-

terized maltose ABC transport system in Escherichia coli (Section C in S1 Appendix). The

model accurately predicts the observed KM as well as the shape of the uptake rate curves as

functions of both extracellular maltose concentration and binding protein abundance (Figs

A-D in S1 Appendix).

To obtain a compact analytical expression describing how transport protein abundances

affect uptake rate, we used our model to derive an approximation of ABC transport kinetics in

Michaelis–Menten form. By assuming that binding proteins are much more abundant than

active transport units [28,35] ([BP]total�[T:S:BP]+[T:BP]) and that the abundance of unbound

transport units is low (so that [T]�k00r/k01) (Fig 1 and Section B in S1 Appendix), we obtain

from Eqs 2–5 the following approximation for the cytoplasmic uptake rate:

vABC �
k0

2
k0

3

k0
2
þ k0

3

½T�total
½BP�total

K 0T þ ½BP�total

� �
½S�p

K0TKD
K0Tþ½BP�total

þ ½S�p
: ð6Þ

This Michaelis–Menten equation well approximates ABC transport when the binding pro-

tein to transport unit ratio sufficiently exceeds one and thus captures the dynamics of the full

ABC transport model (Eqs 2–5) over a wide range of parameter values (S1 Fig).

This formulation shows analytically how the half-saturation “constant” KM is, in fact, a

function of the concentration of binding proteins in the periplasm ([BP]total, Fig 2). For

Fig 2. Maximal uptake rates, half-saturation concentrations, and specific affinities of PTS and ABC transport

systems. We can approximate cytoplasmic uptake rates using the Michaelis–Menten equation: vc = Vmax[S]p/

(KM+[S]p), where Vmax is the maximal uptake rate and KM the half-saturation concentration. While the exact solution

of the cytoplasmic uptake rate for our model of PTS is in the form of a Michaelis–Menten equation, the exact solution

of the uptake rate for ABC transport is not. Because our simulations suggest that the abundance of binding proteins

should exceed the abundance of transport units in the oligotrophic conditions where ABC transport is optimal, we

make the approximations that (i) [T:S:BP]+[T:BP]�[BP]total and (ii) k01[T]�k0r (Section B in S1 Appendix) to obtain

the above estimates for the effective maximal rate and half-saturation concentration. For PTS, the half-saturation

concentration is a constant equal to the dissociation constant KT = k2/k1. For ABC transport, the half-saturation

concentration depends on both the transport dissociation constant K 0T ¼ k02k03=ðk
0
1ðk02 þ k0

3
ÞÞ and the binding protein

dissociation constant KD = k00r/k00f and is additionally a function of the abundance of binding proteins. Under this

approximation, the specific affinity a0 = V0max/K0M of ABC transport is thus proportional to the product of the

abundances of transport units and of binding proteins.

https://doi.org/10.1371/journal.pcbi.1009023.g002
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½BP�total � ½T�total and ½BP�total � K 0T, as is the case for E. coli’s ABC maltose transport system,

the approximation predicts that the half-saturation concentration KM is proportional to both

the transport dissociation constant K 0T and the binding protein dissociation constant KD and is

inversely proportional to the total abundance of binding proteins [BP]total. Therefore, express-

ing high abundances of binding proteins enables oligotrophs to attain small KM values and

thus high affinities. At low nutrient concentrations, the classic Michaelis–Menten uptake rate

is proportional to the specific affinity [36], a = Vmax/KM. Whereas a bacterium using PTS has

constant KM and thus can increase its specific affinity in oligotrophic conditions only by tun-

ing Vmax (via expression of the transport unit; Eq 1), a bacterium using ABC transport can

increase its specific affinity by tuning either Vmax or KM, by tuning the expression levels of the

transport units and binding proteins, respectively (Eq 6).

A rate–affinity trade-off drives the differentiation of oligotrophs and

copiotrophs

The derived Michaelis–Menten kinetics (Eqs 1 and 6) show how ABC transport systems allow

bacteria to achieve higher substrate affinities than PTS by expressing high abundances of bind-

ing proteins. To understand the costs associated with achieving these high affinities and thus

to determine how the optimal expression levels of transport units and binding proteins differ

in low-nutrient and high-nutrient environments, we integrate our solutions for the cyto-

plasmic uptake rates of PTS (Eq 1) and ABC transport (Eqs 2–5) into a mechanistic, single-cell

metabolic model (Fig 3, Methods, and Section D in S1 Appendix). Similar to the self-replicator

model of Molenaar and others [37], our highly idealized metabolic model accounts for only

four protein groups–transport proteins, metabolic proteins, ribosomes, and membrane bio-

synthesis proteins–and is used to solve a proteome allocation problem that determines the

optimal amount of each protein group that the cell should express in order to maximize its

growth rate for a given extracellular nutrient concentration.

Our metabolic model tracks the transport of a nutrient into the cytoplasm and the subsequent

transformation of that nutrient into the proteins and metabolites required for replication. The

abundances of proteins and metabolites are constrained by the cell’s surface-area-to-volume

ratio. Because the cellular components occupy volume, they are limited by maximum cytoplasmic

and periplasmic densities to prevent molecular overcrowding [37], and this favors smaller sur-

face-area-to-volume ratios. On the other hand, the surface of the inner membrane must be suffi-

ciently large because the membrane-bound transport units carry “real estate costs” [37,38]. Larger

surface-area-to-volume ratios also support higher specific uptake rates by diffusion at low-nutri-

ent conditions [39–41]. Thus, taken together, the surface-area-to-volume ratio creates a trade-off

between the cell’s capacity for uptake and its capacity for synthesis. Therefore, in addition to

determining the optimal proteome allocations, our model also determines the optimal surface-

area-to-volume ratio, the protein and metabolite concentrations that are constrained by this ratio,

and the fraction of the volume devoted to the periplasm (Methods, Section D in S1 Appendix).

Central to this optimization problem are the costs and benefits of expressing more of a par-

ticular protein group. While expressing more transport units or binding proteins increases the

uptake rate, it incurs a proteomic cost [35,42–44]. This cost is an opportunity cost. For exam-

ple, because growth rate depends on the proteome fraction allocated to ribosomes [45],

expressing greater abundances of transport proteins may limit growth, as it limits the propor-

tion of the proteome devoted to ribosomes. We assume that the transport units of PTS and

ABC transport systems have the same proteomic cost and that the proteomic cost of an ABC

binding protein is four times less than the cost of a transport unit (see Section D.3 in S1

Appendix for justifications).
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The effect that these transport proteomic costs have on the optimal proteome allocation

strongly depends on the uptake rate per transport unit. This uptake rate is often limited by

rates of diffusion within the periplasm [46,47]. Hence, we argue that differences in substrate

diffusion drive a trade-off between PTS and ABC transport. Because ABC binding proteins

are much larger than the substrates they bind, the diffusivity of the binding proteins is

lower than the diffusivity of the substrate, limiting the achievable rates of ABC transport rel-

ative to PTS, as suggested by [28]. For example, a typical binding protein (MalE) has a

molecular weight of approximately 40 kDa and thus an estimated cytoplasmic diffusivity of

2 μm2/s, whereas glucose has a molecular weight of 0.18 kDa and thus an estimated cyto-

plasmic diffusivity of 200 μm2/s [48]. Our model therefore assumes that the association rate

k01(Fig 1) is one-hundred times smaller than the equivalent rate for PTS (i.e., k01 = 0.01k1)

because it depends on the slow diffusion of the binding protein toward the membrane-

bound transport units.

We choose the other rate values to enable a fair comparison between PTS and ABC trans-

port. We assume that both their translocation rates and transport unit dissociation constants

are equal (k02 = k2, K0T = KT). Therefore, since KT = k2/k1 and K0T = k02k03/(k01(k02+k03)), we

are thus assuming that the rate of the dissociation of the binding protein from the transport

Fig 3. A simple metabolic model tracks the utilization of a generic nutrient by the cell. The nutrient diffuses into

the periplasm via a porous outer membrane and is then transported into the cytoplasm by membrane-bound transport

units. The cell uses either transport by PTS, in which the substrate directly binds to the transport unit, or ABC

transport, in which the substrate must first bind to a binding protein and then this complex binds to the transport unit.

The intracellular substrate is next metabolized by a protein group that transforms the substrate into a precursor (a

generic amino acid) that is needed to build the cell. The precursors are used (i) by a membrane biosynthesis protein

group to build both the outer and inner membranes and (ii) by ribosomes to make proteins comprising the six protein

groups. This model is subject to a number of constraints to determine the proteome allocation that maximizes the

steady-state exponential growth rate. While this model does not consider the utilization of carbon for energy, we

expanded the model to consider energy to show that differences in the energetic requirements of PTS and ABC

transport do not change our results (Section E in S1 Appendix).

https://doi.org/10.1371/journal.pcbi.1009023.g003
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unit is approximately one-hundred times smaller than its translocation rate (k03� 0.01k02).

This is a reasonable assumption because the dissociation of the binding protein from the trans-

port unit and its movement away from the inner membrane is also limited by the slow diffu-

sion of the binding protein [47]. Indeed, these parameter assumptions well match differences

between E. coli’s maltose ABC transport system and glucose PTS (Sections C and D.3 in S1

Appendix). We thus set the translocation rate and dissociation constant to those measured for

E. coli’s glucose PTS, k0
2
¼ k2 ¼ 200 sec-1 and K 0T ¼ KT ¼ 10 μM. In addition, we assume that

the kinetics of the binding of substate to binding protein matches that of maltose to MalE so

that KD = 1 μM, with association rate k0
0f ¼ 105 mM-1sec-1 and dissociation rate k0

0r = 100 sec-1.

Because we assume that the diffusive rates of binding proteins limit ABC uptake rates, our

model shows that PTS can achieve higher maximal uptake rates Vmax per proteomic cost than

ABC transport (Fig 2). Specifically, at saturating extracellular nutrient concentrations, the opti-

mal cell using PTS devotes 80 times less proteome to transport than the optimal cell using

ABC transport (Fig 4A) yet achieves a slightly (3%) higher Vmax (S2 Fig). Therefore, cells using

PTS achieve higher growth rates than cells using ABC transport when nutrient concentrations

are high (Fig 5A).

Conversely, our model shows that ABC transport systems have higher specific affinities (a)

per proteomic cost than PTS (Figs 2 and 5A). As the nutrient concentration decreases to 1 nM,

the cytoplasm of the optimal ABC cell shrinks to concentrate the limiting metabolites so that

the optimal cytoplasmic concentrations remain nearly constant over all extracellular nutrient

concentrations (S3 Fig). Yet the optimal periplasmic volume increases so that the optimal ABC

cell at 1 nM has a periplasmic volume that is, in fact, larger than its cytoplasmic volume (S4

Fig). This increase in periplasmic volume prevents molecular overcrowding while permitting

an increase in the abundance of binding proteins, which is limited by the periplasmic density

constraint (Section D.1 in S1 Appendix and Figs O and P in S2 Appendix). Thus, although the

optimal periplasmic binding protein concentration remains constant as nutrient levels

decrease (S5 Fig), the binding protein to transport unit ratio ([BP]/[T]total) increases to seven

Fig 4. Optimal proteome allocation for PTS and ABC transport systems. Proteome fractions shown are fractions of

the proteome available for the four specified protein groups. (A) While it is optimal for cells relying on either PTS or

ABC transport systems to devote nearly all of their proteome to transport at low nutrient concentrations, for ABC

transport systems, it is the proteome fraction of the binding proteins that increases as nutrient concentration decreases

and not the fraction allocated to the membrane-bound transport units. (B) As the nutrient concentration decreases,

the optimal maximal uptake of transport increases for PTS but remains constant for ABC transport systems. This

results in an increasing ratio of optimal maximal uptake and maximal metabolic rates for transport by PTS as nutrient

concentration decreases, while it is optimal for ABC transport systems to maintain this ratio closer to one.

https://doi.org/10.1371/journal.pcbi.1009023.g004

PLOS COMPUTATIONAL BIOLOGY Marine oligotrophs versus copiotrophs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009023 May 19, 2021 8 / 21

https://doi.org/10.1371/journal.pcbi.1009023.g004
https://doi.org/10.1371/journal.pcbi.1009023


(Fig 6). This increase in binding protein to transport unit ratio increases the probability that a

transport unit will be bound, thus increasing uptake affinity (S6 Fig). In this way, using a bind-

ing protein with KD = 1 μM and a transport unit with dissociation constant K0T = 10 μM, the

optimal ABC cell achieves an effective half-saturation concentration of K0M� 3 nM (Fig 6).

Thus, although the optimal ABC cell devotes 16% less of its proteome to transport than the

optimal PTS cell, it achieves a half-saturation concentration that is over three thousand times

lower than the half-saturation concentration of the optimal PTS cell, KM = KT = 10 μM. There-

fore, cells using ABC transport achieve higher growth rates than cells using PTS when nutrient

concentrations are low (Fig 5A).

Many bacterial species have both PTS and ABC transport systems for the same nutrient,

using PTS when the nutrient is plentiful and ABC transport when the nutrient is scarce

[24,49]. Because of this redundancy, it has long been hypothesized that there exists a rate-affin-

ity trade-off between PTS and ABC transport [24,28]. Our results provide a mechanistic expla-

nation for this trade-off and furthermore demonstrate that this trade-off, in particular, drives

the differences in performance between the optimal ABC and PTS cell. Alternative hypotheses

on the mechanisms creating a trade-off between the two transport mechanisms are not sup-

ported by our metabolic model. We find that the advantage of PTS in high-nutrient conditions

does not stem from either lower energetic or lower proteomic costs because these costs are

minimal in high-nutrient conditions. When we expanded our model to include the energetic

costs of transport and furthermore incorrectly assumed that the association rate, k1, was the

same for both PTS and ABC transport systems and also that the dissociation rate k0
3

was negli-

gible (i.e., k0
3
� k0

2
), we observed no trade-off: despite the higher proteomic and energetic costs

of ABC transport, the maximal growth rate achieved by the optimal ABC cell was always

greater than or equal to the maximal growth rate achieved by the optimal PTS cell (Section E

in S1 Appendix).

We therefore conclude that the only trade-off that can explain the redundancy of species

that utilize both PTS and ABC transport systems for the same nutrient is a rate–affinity trade-

off that is a consequence of the high affinity achieved by using binding proteins and the

Fig 5. A rate–affinity trade-off. Plots show the results of proteome allocation problems using either PTS or ABC

transport and solved for different extracellular nutrient concentrations (x-axis). We assume that the transport

association rate is 100 times lower for ABC transport than for PTS (k01 = 0.01k1) but that the translocation rate as well

as the transport unit dissociation constant are equal (k0
2
¼ k2; K 0T ¼ KT). We additionally limit the radius of the cell to

a minimum of 60 nm, corresponding to a maximum surface-area-to-volume ratio of 50 μm-1. (A) shows the maximal

growth rates achieved using the optimal proteome allocation, and (B) shows the optimal surface-area-to-volume ratio

used to achieve those maximal growth rates. ABC transport achieves higher growth rates at low nutrient

concentrations because it supports higher substrate affinities per transport proteomic cost, whereas PTS achieves

higher growth rates at high nutrient concentrations because it supports higher maximal uptake rates per transport

proteomic cost.

https://doi.org/10.1371/journal.pcbi.1009023.g005
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binding proteins’ limiting rates of diffusion. Specifically, our model predicts that it is the disso-

ciation rate of the binding protein and transport unit, k0
3
, that limits ABC uptake rate. (See sen-

sitivity analyses in S2 Appendix.) After translocation, the bulky, unbound binding protein

must dissociate from the membrane-bound transport unit and diffuse away from the inner

membrane to allow a bound binding protein to associate with the transport unit. Therefore,

while the translocation rate k2 governs the uptake rate by PTS, we predict that it is the diffusiv-

ity of the binding protein that governs the ABC uptake rate. The heavy reliance of heterotro-

phic bacteria on ABC transport systems in the oligotrophic ocean suggests that this trade-off is

central to the dichotomy between the copiotrophic and oligotrophic lifestyles and that it may

explain the fundamental difference in their achievable growth rates.

Our conclusion that a rate–affinity trade-off between PTS and ABC transport underpins the

differentiation of oligotrophs and copiotrophs is further supported by our model’s predictions on

the optimal surface-area-to-volume ratio. We find that the optimal surface-area-to-volume ratio

(which is inversely proportional to the cell radius) is smaller for PTS cells in nutrient-rich condi-

tions than it is for ABC cells in all nutrient conditions (Fig 5B). This result is in accordance with

observations that typical copiotrophic marine bacteria, like Vibrio, are over ten times larger than

typical oligotrophic ones, like SAR11 [14,40]. The model further reveals that increasing transloca-

tion rates for PTS decreases the optimal surface-area-to-volume ratio (S8 Fig). This indicates that,

whereas larger surface-area-to-volume ratios allow the cell to achieve higher cytoplasmic concen-

trations of metabolites and proteins—and hence higher processing rates—in low-nutrient condi-

tions, smaller surface-area-to-volume ratios are optimal at high nutrient uptake rates because

they provide the cell with more space in which to process the substrate and transform it into bio-

mass. Thus, the higher achievable uptake rates of PTS support larger optimal cell volumes.

A suite of sensitivity analyses confirmed that the fundamental trends observed from the

rate-affinity trade-off depend primarily on our assumption that it is the association and

Fig 6. The effective half-saturation concentration of ABC transport. ABC transport systems achieve low optimal

half-saturation concentrations (Keff, magenta curve and axis)—and thus high specific affinities—as nutrient

concentrations decrease by maintaining a high surface-area-to-volume ratio and increasing the ratio of the abundance

of binding proteins to the abundance of membrane-bound transport units (turquoise curve and axis). For high binding

protein to transport unit ratios, the Michaelis-Menten approximation of ABC transport (Eq 6) holds (S1 Fig). At 1 nM,

where the binding protein to transport unit ratio is approximately seven, the approximation gives Keff� 1.5 nM, while

the calculated Keff = 2.9 nM. (For a plot showing how we calculate the effective half-saturation concentration, see S7

Fig).

https://doi.org/10.1371/journal.pcbi.1009023.g006
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dissociation rates of the binding protein and transport unit (k0
1

and k0
3
) that limit ABC trans-

port and not the translocation rate (k0
2
) nor the association rate of the substrate to binding pro-

tein (k0
0f ). The trends do not depend on the precise magnitude of the rates (S2 Appendix).

Although our results are most sensitive to the dissociation rate of the binding protein and

transport unit k0
3
, we find that a rate-affinity trade-off in the relative achievable growth rates of

PTS versus ABC transport still exists when we increase the dissociation constant from k0
3

=

0.01 k0
2

to k0
3
¼ k0

2
(S2 Appendix). While modifications to the surface-area-to-volume ratio and

density constraints modulate the magnitude of the rate-affinity trade-off, we find that the mag-

nitude of the trade-off is most sensitive to the relative proteomic costs of transport versus pro-

tein synthesis (S3 Appendix). If we increase the proteomic cost of transport relative to protein

synthesis, then the optimal ABC cell has less of an advantage in oligotrophic conditions (that

is, there is a smaller difference in the achieved growth rates of the ABC and PTS cells), whereas

the optimal PTS cell has a greater advantage in high-nutrient conditions (Fig A in S3 Appen-

dix). Conversely, if we increase the protein synthesis proteomic cost relative to the transport

proteomic cost, the optimal ABC cell now has a greater advantage in oligotrophic conditions,

whereas the optimal PTS cell has a smaller advantage in high-nutrient conditions (Fig B in S3

Appendix).

ABC cells achieve high affinities while closely matching metabolic and

transport capacities

Unlike a cell using PTS, a cell using ABC transport can increase its specific affinity without

increasing its maximal uptake rate (Eq 6). Our model predicts that, for both the optimal PTS

cell and the optimal ABC cell, as the extracellular nutrient concentration decreases, the frac-

tion of the proteome devoted to transport increases, while the fraction of the proteome devoted

to metabolic enzymes decreases (Fig 4A). For PTS, increasing the transport proteome fraction

increases the maximal uptake rate Vmax (Fig 2). As a result, our model demonstrates a mis-

match between metabolic and transport capacities for a PTS cell optimized for growth in low-

nutrient conditions: for the optimal PTS cell, the ratio of the transport capacity Vmax and the

metabolic capacity—which is proportional to the abundance of metabolic enzymes—exceeds

one for all nutrient concentrations below 1 mM. Indeed, at 1 nM, this ratio approaches 10,000

(Fig 4B). Therefore, a PTS cell optimized for growth in nutrient-poor conditions that suddenly

encounters a higher nutrient concentration would uptake more nutrient than it can process

and could quickly accumulate toxic levels of metabolites if it cannot excrete them.

In contrast, as the extracellular nutrient concentration decreases, the optimal ABC cell does

not allocate any additional proteome to membrane-bound transport units but only to binding

proteins to increase its affinity (Fig 4A). As a result, our model shows that the optimal ABC

cell maintains a transport to metabolic capacity ratio of one for all nutrient concentrations

above 0.1 μM. At 1 nM, the maximum ratio is below ten (Fig 4B). Therefore, our model sug-

gests that a cell using ABC transport is much less prone to mismatches between its proteome

and the environment that may cause toxic accumulations of metabolites within the cell.

Hence, cells may rarely if ever need to excrete metabolites that are consumed only using ABC

transport systems.

Discussion

We used a simple metabolic model to quantify the costs and benefits of using PTS versus ABC

transport systems and thus understand the divergence of the copiotrophic and oligotrophic

lifestyles of heterotrophic marine bacteria that rely on carbon as an energy source. By deriving

an approximation of ABC transport in Michaelis–Menten form, we predict that, when the
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abundance of binding proteins sufficiently exceeds the abundance of transport units, the spe-

cific affinity of ABC transport is directly proportional not only to the transport unit abundance

but also to the binding protein abundance, corroborating previous theoretical work that found

that KM is a function of binding protein abundance [28]. Our analysis thus suggests that cells

should maintain high binding protein to transport unit ratios to achieve high specific affinities.

We predict that, for oligotrophs such as members of the SAR11 clade, the KM value may be

over a thousand-fold smaller than the dissociation constant of the binding protein KD.

Although we are aware of only two experimental studies that considered the effects of varying

binding protein abundance on uptake, both provide support to our model. We used one of the

experimental studies—on E. coli’s ABC maltose transport system—to directly verify our mod-

el’s predictions on the dependence of uptake on binding protein abundance (Section C in S1

Appendix). The second study found that a Salmonella typhimurium mutant that expresses five-

fold higher levels of binding protein for histidine uptake has a fourfold lower KM—thirtyfold

lower than the estimated KD of the binding protein for histidine [50]. Our Michaelis-Menten

approximation of ABC transport is consistent with these observed values, predicting that the

Salmonella mutant’s binding protein concentration is approximately thirty times greater than

the transport unit dissociation constant KT.

As ABC transport systems are ubiquitous in gram-negative bacteria, the fact that KM may

be drastically different from KD has important implications for our ability to predict microbial

dynamics. Because of the difficulty of measuring the value of KM for uptake directly, much pre-

vious work has estimated the performance of ABC transport systems using binding assays that

measure KD instead [25,34]. Our work suggests that this estimate could differ from KM by

orders of magnitude for oligotrophs that use high abundances of binding proteins, thus poten-

tially leading to substantial underestimates of oligotrophs’ nutrient uptake rates. In addition, a

variety of microbial ecosystem models assume a constant value of KM for uptake [51,52], but

this assumption may be flawed because bacteria may vary their binding protein abundance

and thus their KM value as a function of environmental conditions. Alternatively, it is also pos-

sible that cells have evolved to express a constant binding protein abundance to maintain a

constant, ecologically relevant KM value. Experiments are needed to determine the extent to

which binding protein abundance and the value of KM vary within a species, as well as the

impacts of the variability in KM on ecosystem dynamics.

Our model provides a mechanistic explanation for the differences in performance observed

between the glycine betaine transport systems of E. coli and of a SAR11 strain that is prevalent

in the vast nutrient-poor expanses of the ocean [29]. The SAR11 strain can achieve nanomolar

values for the half-saturation concentration of glycine betaine uptake, whereas E. coli’s geneti-

cally similar glycine betaine transport system uses a binding protein with only a micromolar

dissociation constant [21]. It was posited that SAR11 achieves these higher affinities by achiev-

ing higher binding protein concentrations in a large periplasm [21]. Our model corroborates

this hypothesis and furthermore demonstrates how SAR11 can achieve a nanomolar half-satu-

ration concentration using a binding protein with the same micromolar binding affinity as E.

coli’s glycine betaine binding protein. To achieve such a high specific affinity using a binding

protein with only a micromolar dissociation constant, our model predicts that SAR11 main-

tains a high binding protein to transport unit ratio. Although our model cannot rule out the

alternative possibility that oligotrophs evolved binding proteins with lower KD values to

achieve very low KM values, it does demonstrate that this is not required. To determine the rel-

ative roles of low KD values versus high binding protein abundances for achieving high affini-

ties in SAR11, their binding proteins must be purified and used in binding assays to directly

measure KD values and contrast them with the KM values attained from uptake rate

measurements.

PLOS COMPUTATIONAL BIOLOGY Marine oligotrophs versus copiotrophs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009023 May 19, 2021 12 / 21

https://doi.org/10.1371/journal.pcbi.1009023


It was previously hypothesized that typical oligotrophs achieve higher specific affinities

than copiotrophs by having higher ratios of transport units to metabolic enzymes—and thus

extremely high ratios of transport to catabolic capacity [53], and this theory is still often used

to explain the nutrient acquisition strategy of SAR11 [29]. Here we propose an alternative the-

ory: unlike cells using PTS, cells using ABC transport are able to increase their specific affinity

without increasing their maximal uptake rate. As a result, oligotrophs may be able to closely

match their transport and metabolic capacities for a number of important compounds. We

hypothesize that it is for this reason that members of the SAR11 clade experience large nutrient

upshifts as toxic [9,54,55]: since transport capacity rarely exceeds metabolic capacity, they may

not be able to excrete substrates consumed via ABC transport as they would not need to do so

in the nutrient-poor ocean in which they evolved. Consequently, an atypical, large nutrient

upshift would overwhelm the cytoplasm with substrate that the cell can neither process nor

excrete.

Our metabolic model indicates that ABC transport systems are more efficient than PTS

at low nutrient concentrations because expressing an additional binding protein has a

lower proteomic cost than expressing an additional transport unit and, furthermore, does

not incur real-estate costs on the inner membrane. Instead, the binding protein abundance

is subject only to a constraint on the periplasmic density, a constraint that a cell can miti-

gate by modifying the fraction of its volume devoted to the periplasm. Our model predicts

that the optimal periplasmic volume fraction increases as extracellular nutrient concentra-

tion decreases (S4 Fig): observations suggesting that the periplasm occupies up to 70% of

the volume of a SAR11 Pelagibacter cell [56] are in line with this prediction. Therefore, our

model predicts that a majority of an oligotroph’s proteome is comprised of binding pro-

teins (Fig 4A). This prediction is corroborated by metaproteomic analyses showing that

binding proteins are among the most prevalent bacterial proteins found in the oligotrophic

ocean [19].

Our results provide a mechanistic explanation for the long-standing hypothesis of a rate–

affinity trade-off for nutrient uptake by marine bacteria [57,58]. An oligotroph’s reliance on

binding proteins to achieve high affinities precludes its ability to attain high growth rates

because our model assumes that the rate of ABC transport is diffusion-limited due to the bulki-

ness of the binding proteins. In particular, our model predicts that it is the dissociation of the

transport unit and binding protein that is the limiting step of ABC transport and, specifically,

that this dissociation step is much slower than translocation because of the size of the binding

protein. To test this hypothesis, we must measure the association and dissociation rates of

binding protein and transport unit for different ABC transport systems and determine

whether these rates are functions of the size of the binding protein.

We also find that the mechanism of this rate-affinity trade-off explains observations that

the surface-area-to-volume ratio of a typical oligotroph, like a SAR11 cell, is at least fivefold

greater than that of a typical copiotroph, like a Vibrio [59]. We thus propose that the high

translocation rates of PTS in copiotrophs are advantageous not only because they support

greater uptake rates at high nutrient concentrations but also because these higher uptake rates

support larger optimal cell volumes. This is of particular importance to motile copiotrophs,

which must be large enough to overcome rotational diffusion in order to swim effectively

toward nutrient hotspots [60]. In addition, motile cells may not be able to attain values of KM

as low as those of oligotrophs because of the large periplasmic volume fractions that this

requires. Because the distance between the outer and inner membranes dictates the length of

the flagellar rotor, periplasmic volume is carefully regulated in motile cells [61] and typically

does not exceed 20% of the cell volume [62].
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Although this work considered optimal cell physiologies in different homogeneous,

unchanging environments, it also suggests how cells may optimally regulate their proteomes

and morphologies in response to changes in nutrient levels. Our analysis suggests that, in

response to a decrease in nutrient concentration, a cell should shrink its cytoplasm and inflate

its periplasm to increase the ratio of ABC binding proteins to transport units. It has been

observed that Vibrios, at the onset of starvation, divide—thus shrinking in size and shedding

their flagella [63,64]. It would be interesting to determine if the shedding of the flagella enables

Vibrio to increase periplasmic volume to thus increase binding protein abundance. Similarly,

although previous work suggests that SAR11 cells remodel very little of their proteome in

response to environmental fluctuations [29], our model suggests that oligotrophs should regu-

late periplasmic volume and binding protein abundance due to the high costs of growing the

outer membrane and expressing high ratios of binding proteins to transport units. Future

experiments should investigate the extent to which SAR11 may vary binding protein abun-

dance in response to nutrient levels.

In summary, our work suggests that the constraints imposed by a rate–affinity trade-off

between PTS and ABC transport systems shaped the divergent evolution of copiotrophic and

oligotrophic bacteria in the ocean. By quantifying this trade-off, our model helps predict the

achievable nutrient uptake rates and affinities of marine heterotrophic bacteria. These mecha-

nistic predictions could be used to constrain the parametrizations of marine microbial ecosys-

tem models used to understand how bacterial population dynamics may affect carbon flux

rates in a changing ocean.

Methods

To compare the performance of PTS and ABC transport, we incorporated models of each (Eqs

1 and 2–5) into a single-cell metabolic model that is a modification of the self-replicator model

proposed by Molenaar and others [37]. We used this model to solve the following proteome

allocation problem:

maximize
x

m

subject to : equality constraints EqC: 1 � 7; inequality constraints Ineq:C 1 � 3;

xi � 08i; and cell radius r > 60 nm;

where μ is the steady-state exponential growth rate; the independent variables to be optimized

are x = (xm, ϕ, r, fp, μ); the vector of intracellular metabolite concentrations xm = ([S]p, [S]c,

[A], [W], [P]) is comprised of the periplasmic concentration of the generic carbon substrate

[S]p, the cytoplasmic concentration of the carbon substrate [S]c, the cytoplasmic concentration

of amino acids [A], the number of generic cell membrane units divided by the cytoplasmic vol-

ume of the cell [W], and the number of amino acids incorporated into protein divided by the

cytoplasmic volume of the cell [P]; the vector ϕ = (ϕBP, ϕT, ϕE, ϕM, ϕR) denotes the fraction of

the proteome devoted to ABC binding proteins, transport units, metabolic enzymes, mem-

brane biosynthesis enzymes, and protein synthesis enzymes respectively; and fp is the fraction

of the cell’s volume devoted to the periplasm.

The equality constraints 1–5 are ordinary differential equations that assume balanced,

steady-state exponential growth of each of the five cellular components:

EqC: 1 � 5 :
dxm
dt
¼ Nvr � mxm ¼ 0;

PLOS COMPUTATIONAL BIOLOGY Marine oligotrophs versus copiotrophs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009023 May 19, 2021 14 / 21

https://doi.org/10.1371/journal.pcbi.1009023


where N is a stoichiometry matrix; and vr is a vector of Michaelis-Menten reaction rates,

vr ¼

vdiff ðSext ! SpÞ

vc ðSp ! ScÞ

kE E½ �
½S�c

KM;E þ ½S�c
ð5Sc ! 6AÞ

kW M½ �
½A�

KM;W þ ½A�
ðA!WÞ

kE R½ �
½A�

KM;R þ ½A�
ðA! PÞ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

where enzyme concentration [X] = ϕXαX[P]. We here assume that the periplasmic concentra-

tion of substrate is limited by diffusion and not by porin abundance so that the periplasmic

uptake rate is

vdif f ¼ 3D
½S�ext � ½S�p

fpr2
;

where D is the diffusivity of the substrate and [S]ext is the specified concentration of substrate

in the external environment. The cytoplasmic uptake rate vc is either that of PTS (Eq 1) or of

ABC transport (Eqs 2–5).

Equality constraint EqC. 6 ensures that the proteome fractions sum to one:

EqC: 6 : 1 ¼ �O;cyto þ �O;peri þ
X

i2P
�i;

where ϕO,cyto (ϕO,peri) is a required constant fraction of the proteome devoted to “other” pro-

tein components in the cytoplasm (periplasm).

Equality constraint EqC. 7 ensures that the concentration of cell membrane units, [W], is

sufficient to cover both the inner and outer membranes of the cell:

EqC: 7 : 4p 1þ ð1 � fpÞ
2
3

� �
r2 ¼ W½ �

4pr3

3

� �

aw;

where aw is the surface area of a single membrane unit.

Inequality constraints IneqC. 1&2 are density constraints on the cytoplasm and periplasm:

IneqC: 1 :
X

j2Mcyto
mjxmðjÞ � rcyto;

IneqC: 2 :
X

j2Mperi
mjxmðjÞ � rperi;

where mj is the molecular weight of metabolite j and ρcyto (ρperi) is the maximal allowed density

of the cytoplasm (periplasm).

Inequality constraint IneqC. 3 ensures that the surface area of the inner membrane in suffi-

ciently large to contain all inner membrane-bound transport units:

IneqC: 3 : fSA 4pð1 � fpÞ
2
3r2

� �
� T½ �

4pr3

3

� �

aT;

where fSA is the fraction of the surface area available for transport units and aT is the surface

area of a single transport unit.
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Values for all of the parameters specified in this model are given and justified in Section D

in S1 Appendix. To solve the optimization problem, we used MATLAB’s constrained nonlin-

ear multivariable function solver, fmincon. To ensure that the solver found globally optimal

solutions, we transformed the units of the constraints and variables so that their predicted

magnitudes were all approximately 1 and ran the solver 50 times for each optimization prob-

lem, each time using a different initial guess for the variables x. The code is available at: https://

github.com/noelenorris/ABC_proteome_allocation.

Supporting information

S1 Appendix. Transport and proteome allocation models. This supplemental appendix con-

tains derivations of the PTS and ABC transport models and ABC Michaelis-Menten approxi-

mation; analysis of E. coli’s ABC maltose transport system; full exposition of metabolic model

with parameter value justifications; and discussion of the energetic costs of transport. Figs A-E

in the S1 Appendix support the analysis of E. coli’s ABC maltose transport system. Fig A:

Effects of maltoporin abundance on uptake. Fig B: Effects of binding protein abundance on

uptake. Fig C: Effects of binding protein abundance on maximal uptake rate. Fig D: Effects of

binding protein abundance on the half-saturation concentration of uptake. Fig E: The perme-

ability of the outer membrane limits half-saturation concentration of uptake.

(PDF)

S2 Appendix. Sensitivity analyses of ABC transport system. This supplemental appendix

presents Figs A-V, showing the optimal solutions of the ABC cell when specified parameter

values are modified against the baseline value. Fig A: Sensitivity analysis, k02. Fig B: Sensitivity

analysis, k02: optimal proteome fractions. Fig C: Sensitivity analysis, k01. Fig D: Sensitivity anal-

ysis, k01: optimal proteome fractions. Fig E: Sensitivity analysis, k03. Fig F: Sensitivity analysis,

k03: optimal proteome fractions. Fig G: Sensitivity analysis, k01 and k03. Fig H: Sensitivity analy-

sis, k01 and k03: optimal proteome fractions. Fig I: Sensitivity analysis, k00f. Fig J: Sensitivity

analysis, k00f: optimal proteome fractions. Fig K: Sensitivity analysis, ;O,cyto. Fig L: Sensitivity

analysis, ;O,cyto: optimal proteome fractions. Fig M: Sensitivity analysis, ρcyto. Fig N: Sensitivity

analysis, ρcyto: optimal proteome fractions. Fig O: Sensitivity analysis, ρperi. Fig P: Sensitivity

analysis, ρperi: optimal proteome fractions. Fig Q: Sensitivity analysis, fSA. Fig R: Sensitivity

analysis, fSA: optimal proteome fractions. Fig S: Sensitivity analysis, number of amino acids

comprising binding protein. Fig T: Sensitivity analysis, number of amino acids comprising

binding protein: optimal proteome fractions. Fig U: Sensitivity analysis, D. Fig V: Sensitivity

analysis, D: optimal proteome fractions.

(PDF)

S3 Appendix. Sensitivity analyses of rate-affinity trade-off. This supplemental appendix

presents Figs A-G, which assesses the sensitivity of the rate-affinity trade-off by contrasting the

optimal ABC and PTS cells when particular parameters are modified. Fig A: PTS versus ABC,

transport proteomic costs x10. Fig B: PTS versus ABC, protein synthesis proteomic cost x10.

Fig C: PTS versus ABC, ;O,cyto = 0.5. Fig D: PTS versus ABC, ρcyto x0.01. Fig E: PTS versus

ABC, ρcyto x100. Fig F: PTS versus ABC, ρperi x0.01. Fig G: PTS versus ABC, ρperi x100

(PDF)

S1 Fig. Comparison of approximate and exact ABC transport half-saturation concentra-

tion values. Here we compare our Michaelis-Menten approximation of the half-saturation

concentration for ABC transport with the exact half-saturation concentration obtained by

solving the set of four equations for ABC transport rates using baseline values for the kinetics

rates and modifying the periplasmic concentration of transport units and binding proteins.
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Note that, for a periplasmic transport unit concentration of 1.16 mM, the half-saturation con-

centration does not asymptote to the approximation because, in this case, [T]total>k00r/k01f. Yet

the exact solution follows the same trend as the approximation.

(TIF)

S2 Fig. Optimal maximal uptake rates and specific affinities. Here are plots showing the

optimal maximal uptake rates, Vmax, and corresponding optimal specific affinities, Vmax/KM.

(TIF)

S3 Fig. Optimal cytoplasmic concentrations for ABC cell. Optimal cytoplasmic concentra-

tions of intracellular nutrient (Sc), amino acids, and total protein (in units of amino acids) over

extracellular nutrient condition for cell with ABC transport. Although the extracellular nutri-

ent concentration varies over many magnitudes, the optimal intracellular concentrations vary

by less than a factor of three.

(TIF)

S4 Fig. Optimal periplasmic volume fraction for ABC transport. The optimal periplasmic

volume fraction increases as nutrient concentration decreases to allow for greater abundances

of binding proteins, which are subject to a density constraint on the periplasm.

(TIF)

S5 Fig. Optimal periplasmic concentrations for ABC cell. Although the optimal binding

protein concentration remains nearly constant over all extracellular nutrient concentrations,

the periplasmic transport unit concentration ([T]total) decreases as nutrient concentration

decreases due to the inflation of the periplasm. While the periplasm inflates, the cytoplasm

shrinks so that, for an extracellular nutrient concentration of 1 nM, the optimal periplasmic

concentration of transport units is less than the abundance of transport units divided by the

cytoplasmic volume ([T]totalVperi/Vcyto).

(TIF)

S6 Fig. Impact of modifications to periplasmic volume around optimal solution of ABC

cell at nutrient concentration of 1 nM. To understand why the periplasm inflates as the nutri-

ent concentration decreases to 1 nM, we plot the proportion of bound transport units (A) and

effective half-saturation constant, KM, (B) as we modify the periplasmic volume of the optimal

solution for a nutrient concentration of 1 nM. We assumed that both the concentration of

binding proteins in the periplasm and the abundance of transport units on the inner mem-

brane remain constant. Therefore, as the periplasm grows, the periplasmic concentration of

transport units decreases and the ratio of binding proteins to transport units increases. (A)

shows how the increase in abundance of binding proteins due to the inflation of the periplasm

leads to an increase in the proportion of bound transport units, where we here assume that the

concentration of free substrate in the periplasm ([S]p) is equal to 1 nM. (B) shows the calcu-

lated half-saturation constant by fitting the Michaelis-Menten equation to the exact solutions

of ABC transport uptake (Eqs 2 to 5), as well as our Michaelis-Menten approximation of the

half-saturation constant (Eq 6), which holds only when the binding protein concentration suf-

ficiently exceeds the transport unit concentration.

(TIF)

S7 Fig. Calculating the half-saturation concentration of ABC transport. To calculate the

effective half-saturation concentration of an optimal solution to a particular proteome alloca-

tion problem, we used the system of equations describing ABC transport to determine the

uptake rate over a range of nutrient concentrations (x-axis). Here we show the calculated

uptake rates over various nutrient concentrations for the proteome allocation obtained when
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optimized the cell for growth at an extracellular concentration of [S]ext = 1 nM.

(TIF)

S8 Fig. Sensitivity analysis of proteome allocation for PTS transport to changes in translo-

cation rate k2 at extracellular carbon concentration [S]ext = 100 mM. Increases in the trans-

location rate result in (A) higher achievable growth rates and (B) larger optimal cell radii (that

is, smaller surface-area-to-volume ratios).

(TIF)

S9 Fig. Active constraints on cell radius. Both the surface area “real estate" constraints and

the density constraints are active for the PTS transport proteome allocation problem. Increases

in maximal allowed density result in smaller optimal cell radii (red and yellow). Increases in

the fraction of the surface area available to the membrane-bound transport units result in

larger optimal cell radii (purple and green).

(TIF)
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