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Chemotaxis underpins important ecological processes in marine
bacteria, from the association with primary producers to the coloni-
zation of particles and hosts. Marine bacteria often swim with a
single flagellum at high speeds, alternating “runs” with either 180°
reversals or ∼90° “flicks,” the latter resulting from a buckling insta-
bility of the flagellum. These adaptations diverge from Escherichia
coli’s classic run-and-tumble motility, yet how they relate to the
strong and rapid chemotaxis characteristic of marine bacteria has
remained unknown. We investigated the relationship between
swimming speed, run–reverse–flick motility, and high-performance
chemotaxis by tracking thousands of Vibrio alginolyticus cells in
microfluidic gradients. At odds with current chemotaxis models,
we found that chemotactic precision—the strength of accumulation
of cells at the peak of a gradient—is swimming-speed dependent in
V. alginolyticus. Faster cells accumulate twofold more tightly by
chemotaxis compared with slower cells, attaining an advantage in
the exploitation of a resource additional to that of faster gradient
climbing. Trajectory analysis and an agent-basedmathematical model
revealed that this unexpected advantage originates from a speed
dependence of reorientation frequency and flicking, which were
higher for faster cells, and was compounded by chemokinesis, an
increase in speedwith resource concentration. The absence of any one
of these adaptations led to a 65–70% reduction in the population-
level resource exposure. These findings indicate that, contrary towhat
occurs in E. coli, swimming speed can be a fundamental determinant
of the gradient-seeking capabilities of marine bacteria, and suggest a
new model of bacterial chemotaxis.
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Motility is an essential component of chemotaxis (1), the
ability of organisms to sense chemical gradients and swim

toward more favorable conditions, for example, to find dissolved
or particulate nutrients, colonize and infect hosts, or evade nox-
ious substances (2). Most of our knowledge of bacterial chemo-
taxis comes from the study of Escherichia coli, a bacterium that
inhabits the lower intestine of warm-blooded animals and swims
using multiple (4–10) flagella (2). Counterclockwise (CCW) ro-
tation of all motors causes the flagella to bundle and to propel the
cell into a nearly straight “run” at 10–30 μm/s (2). A change in
swimming direction occurs when one or more motors switch to
clockwise (CW) rotation, disrupting the flagellar bundle and
leading to a nearly random reorientation or “tumble” (2). The
key to success in E. coli’s chemotaxis strategy is the bacterium’s
ability to control the switching frequency between CCW and CW
flagellar rotation, giving rise to the well-known run-and-tumble
swimming pattern (2). In this process, the swimming speed re-
mains largely unchanged, and despite the bacterium’s ability to
sense mechanical stimuli (3), it is generally held that its che-
motaxis depends only on the sensing of chemical stimuli. Con-
sequently, the swimming speed has not been considered to
affect the ability of cells to retain position in favorable regions
of a gradient and does not enter into classic models of E. coli’s

chemotaxis, beyond simply allowing proportionately faster climbing
of a gradient (4).
Marine bacteria often exhibit higher chemotactic speed and

precision than E. coli, showing faster gradient climbing and better
steady-state accumulation at resource peaks (5, 6). These charac-
teristics make marine bacteria a valuable model system to under-
stand the limits of chemotaxis in microorganisms (7). For example,
the marine bacterium Pseudoalteromonas haloplanktis was observed
to respond up to 10-fold more rapidly than E. coli to resource pulses
(5). The coastal marine bacterium Vibrio alginolyticus was found to
accumulate threefold faster and sevenfold more tightly than E. coli
toward serine (6). These high chemotactic performances are cer-
tainly caused at least in part by high swimming speeds, a common
adaptation in marine bacteria (5, 8). However, a quantitative
analysis has shown that simply rescaling E. coli’s speed to that of
marine bacteria is not sufficient to explain the differences in their
chemotactic performance (7), pointing at the need to better un-
derstand how the latter depends on the swimming pattern overall.
Analysis of a collection of ∼600 motile species of marine bac-

teria has shown that the majority (>90%) have a single, polar
flagellum (9). The swimming patterns of marine bacteria have
long been known to differ from E. coli’s run-and-tumble swim-
ming (6, 10) by not displaying classic tumbles (8). However, only
recently has a clearer picture emerged for the motility pattern of
marine bacteria (6) and the underlying biomechanics (10), based on
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detailed observations of V. alginolyticus. V. alginolyticus alternates
between forward and backward runs, and reorients by 180° reversals
or 90° (on average) “flicks” (6). The flick arises from a large, off-axis
deformation of the flagellum (6) caused by the buckling of the hook
(10), a ∼100-nm-long, flexible structure that connects the flagellar
filament to the rotary motor. The probability of a flick occurring
during each run–reverse–flick cycle, PF, is swimming-speed de-
pendent, because the compressive load that causes buckling in-
creases with speed (10), resulting in a sharp transition of the
motility pattern from “run–reverse” to “run–reverse–flick” with
increasing swimming speed (10). Thus, in contrast to E. coli, the
motility pattern of V. alginolyticus is swimming-speed dependent.
However, how this dependence on speed affects chemotactic
performance has remained unknown.
A second important adaptation of several species of marine

bacteria is chemokinesis (11, 12), the ability to modulate swim-
ming speed in response to the concentration of a chemical (SI
Text). The origin of chemokinesis remains largely unknown, and
E. coli is generally believed to not display chemokinesis (13) [al-
though some recent findings have questioned this model (14)].
Chemokinesis can enhance chemotaxis by increasing the speed
of the cells, and thus the rate at which they climb chemical gra-
dients (11), and also shifting the distribution of speeds within a
population into a regime where flicks are predominant.
By focusing on these two speed-dependent motility adapta-

tions in marine bacteria—flicking and chemokinesis—we study
the chemotactic performance of V. alginolyticus as a function of
the cells’ swimming speed. In contrast to chemotaxis in E. coli
and to current mathematical predictions, we find that the steady-
state chemotactic accumulation of V. alginolyticus in a chemical
gradient is speed dependent. A mathematical model of chemotaxis
in marine bacteria that captures these observations suggests that
swimming speed is an important parameter in their chemotaxis
pathway, and helps explain the fast swimming speeds often ob-
served among bacteria from the ocean.

Results
Dependence of Chemotaxis on Swimming Speed. A steady linear
concentration profile (“linear gradient”) of the amino acid ser-
ine, a chemoattractant for V. alginolyticus (6), was generated in a
purposely engineered microfluidic device (Figs. S1 and S2, and
Materials and Methods). The serine concentration in the micro-
channel varied from 100 to 400 nM (Fig. S1), corresponding to
conditions representative of dissolved free amino acids in the
ocean (15), and resulting in a steady linear gradient of 0.5 nM/μm.
We identified and tracked individual cells via video microscopy
and determined the chemotactic response of the population by
quantifying the steady-state chemotactic distribution of cells along
the serine gradient (Fig. 1). This revealed a strong accumulation of
cells in the direction of increasing serine concentration, with 60%
of the cells accumulated in the 100-μm region at the top of the
600-μm-wide gradient (Fig. 1C, black).
Single-cell tracking allowed us to quantify the natural variation

of swimming speed within the population (Fig. 1A) and revealed
that the distribution of speeds is well approximated by a gamma
function (shape parameter, 8.8; scale parameter, 4.3). The average
swimming speed V of each cell was computed by averaging its in-
stantaneous speed over the duration of its trajectory. This approach
is justified because the magnitudes of swimming speed fluctuations
in a trajectory relative to the mean are moderate (on average, 39 ±
6%). We could thus bin cells in the analysis based on their swim-
ming speed and therefore separately consider the chemotactic
distribution of cells having different speeds (Fig. 1 A and B). We
further increased the dynamic range of the swimming speed by
using a range of sodium concentrations in the solution, [Na+] =
3–600 mM, exploiting the fact that the motor of V. alginolyticus
is driven by transmembrane sodium gradients (10), so that the
cells’ swimming speed (averaged over the population) increases

with the sodium concentration, according to V = V0 [Na
+]/(14.9 +

[Na+]), where V0 = 47.5 μm/s (10). Overall, we quantified the che-
motaxis of 55,718 individual cells: in the analysis, each cell was
assigned to 1 of 12 speed bins, ranging from 8.4 ± 1.2 to 54.1 ±
5.9 μm/s, based on its swimming speed. In the following, we refer to
this process as speed-based binning and to different ranges of speed
as speed bins, for brevity. Different speed bins had different widths
so that each bin contained the same number of cell trajectories, for
statistical robustness in the computation of swimming kinematics.
This speed-based binning revealed a stark difference in the

steady-state chemotactic accumulation of cells swimming at dif-
ferent speeds (Fig. 1B). Faster cells accumulated more tightly than
slower cells, as seen by comparing a slow-speed bin, V = 8.4 ±
1.2 μm/s, and a fast-speed bin, V = 38.9 ± 1.3 μm/s (Fig. 1B). To
quantitatively determine the dependence of the strength of ac-
cumulation on the swimming speed, we computed the bacterial
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Fig. 1. The chemotactic precision of V. alginolyticus increases with swimming
speed. (A) Distribution of swimming speeds, p(V), within a V. alginolyticus
population in the presence of a serine gradient (defined in Fig. S1). The
swimming-speed distribution (markers) is well fitted by a gamma distribution
(line). The shaded boxes denote two speed bins: V = 8.4 ± 1.2 μm/s (teal) and V
= 38.9 ± 1.3 μm/s (magenta) (B and C). (B) Single-cell trajectories at steady-
state accumulation for cells belonging to the two speed bins identified in A.
Note the considerably tighter accumulation of the faster cells (magenta) in the
region of high serine concentration (toward x = 0). (C) Steady-state bacterial
concentration profiles, B(x), for cells belonging to different speed bins (see
Inset for speed color coding) in the same serine gradient as in B. Data were
collected over a range of sodium concentrations (3–600 mM) and trajectories
were binned into 12 speed bins based on the average swimming speed,
V. Each of the 12 speed bins is 2.5–6.1 μm/s wide, except for the highest speed
bin (40.5 μm/s wide), and contains the same number of trajectories (4,643).
The bacterial distribution B(x) for each speed bin was normalized to a mean of
1. The black line denotes the overall bacterial concentration profile before
speed binning. (C, Inset) Bacterial distributions are well fitted by an expo-
nential function, as illustrated for B(x) pertaining to the two speed bins shown
in B. (C, second Inset) The exponential fit is good for all speed bins, as dem-
onstrated by R2 values consistently close to 1. (D) Chemotactic precision length
scale, L, obtained as the decay length scale of the exponential fits to B(x) for
each of the 12 speed bins shown in C. A low value of L corresponds to a tight
accumulation, hence to high chemotactic precision. (E) Chemotactic migration
coefficient, CMC, for each of the 12 speed bins shown in C. A high value of the
CMC corresponds to a tight accumulation, hence to high chemotactic pre-
cision. Gray symbols represent the same data, where speed binning was
performed separately for each sodium concentration, [Na+]. The CMC values
for E. coli responding to a gradient of α-methylaspartate (from 20 to 80 μM)
in the same microfluidic device (Fig. S1) are shown for comparison, divided
into five speed bins (black open triangles). For C–E, horizontal error bars
denote SDs of each speed bin. Where not visible, horizontal error bars are
smaller than symbols.
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distribution along the chemoattractant gradient, B(x), separately
for each speed bin (Fig. 1C). The distributions B(x) corresponding
to the 12 speed bins clearly demonstrate that faster cells have
higher chemotactic precision, accumulating more tightly in the
high-serine region than slower cells.
Two metrics were used to quantify the speed dependence of

chemotaxis in V. alginolyticus. First, the cell distribution profile
B(x) for each speed bin was fitted by an exponential, B(x) = B0
exp(−x/L), where x is the direction along the chemoattractant gra-
dient, L is the exponential decay length, and B0 is a normalization
constant (Fig. 1C and Inset). The exponential distribution is the
steady-state solution of classic formulations of the bacterial transport
equation (13) (Keller–Segel’s formulation). We found that an ex-
ponential distribution is a very good fit for all 12 speed bins (R2 >
0.95; Fig. 1C, inner Inset). Thus, the exponential decay length scale,
L, provides a robust metric for the chemotactic precision: the smaller
L, the tighter the accumulation. For V. alginolyticus, L decreased
from 187 μm at V = 8.4 ± 1.2 μm/s to 54 μm at V = 27.8 ± 0.95 μm/s,
indicating a tighter accumulation with increasing speed in this range,
and remained nearly constant for higher speeds (Fig. 1D). For
comparison, the full population (Fig. 1C, black) had L = 88 μm.
As a second metric of the speed dependence of chemotaxis, we

computed the chemotactic migration coefficient (16), CMC =
(<x> − W/2)/(W/2), a widely used parameter in the chemotaxis
literature (16) that measures the displacement of a population’s
center of mass, <x> =

R
xB(x)dx, from the central point in the

gradient (x = W/2), with W = 600 μm being the spatial extent of
the gradient (here, the microchannel’s width). CMC = 0 signifies
no chemotactic response, CMC = 1 is maximum attraction, and
CMC = −1 is maximum repulsion. We found that the CMC in-
creased from 0.44 at V = 8.4 ± 1.2 μm/s to 0.74 at V = 27.8 ±
0.95 μm/s, and saturated for higher speeds (Fig. 1E), confirming
the trend revealed by the chemotactic precision length scale, L (Fig.
1D) (for the full population, the CMC was 0.59). We could rule out
the possibility that the change in accumulation strength with speed
was due to physiological changes arising from different sodium
concentrations, as the same speed dependence of the CMC was
obtained when cells were binned by speed separately for each so-
dium concentration (Fig. 1E, gray symbols). Based on these results,
in the subsequent analysis we consider a low-speed regime com-
prising speed bins below V = 30 μm/s and having lower chemotactic
performance, and a high-speed regime comprising speed bins above
V = 30 μm/s and having higher chemotactic performance.
Whereas it is intuitive that chemotactic cells obtain a benefit

from swimming faster—because they can climb resource gradi-
ents more rapidly (Fig. S3)—the tighter steady-state accumula-
tion of faster cells at the peak of a resource gradient is unexpected
and represents an additional benefit of enhanced speed. This
speed dependence is absent in E. coli, as we confirmed by re-
peating experiments with this bacterium exposed to a gradient of
20–80 μM α-methylaspartate (Fig. 1E, black symbols), a commonly
used chemoattractant for E. coli, in a range of concentrations
known to elicit strong chemotaxis (17). Although E. coli displayed
a smaller dynamic range of swimming speeds (V = 11.9 ± 2.1 to
28.8 ± 3.2 μm/s), this range was sufficiently wide to consider five
speed bins and establish that the chemotactic precision was in-
dependent of swimming speed (CMC = 0.42 ± 0.02). Further-
more, the fact that the maximum CMC of E. coli responding
to optimal concentrations of one of its strongest attractants was
on the lower end of the CMC of V. alginolyticus responding to
nanomolar serine concentrations underscores the strong chemo-
tactic capabilities of marine bacteria reported in literature (5, 6).

Strong Chemotaxis at High Swimming Speeds Results from Reduced
Randomness. To understand the origin of the observed speed
dependence of chemotaxis, we first quantified population-level
swimming statistics—the random motility D and the chemotactic
velocity VC—as a function of swimming speed. The chemotactic

velocity measures the net speed at which cells move up the
gradient, and the translational diffusivity (also called “random
motility”) measures the intrinsic randomness of the swimming
pattern and limits the level of accumulation a population can
achieve. The precision with which a population of microorgan-
isms accumulates at the peak of a resource gradient is determined
by the competition between these two properties, with higher VC
enhancing chemotactic precision and higher D reducing it. As
predicted by an advection–diffusion model of bacterial transport
(13), in a linear chemoattractant gradient the steady-state bacterial
distribution is exponential, B(x) = B0 exp(−x/L), with the length
scale L = D/VC (thus, our exponential fit to observed distribution
profiles in Fig. 1C). To gain insights into the observed speed de-
pendence of the chemotactic precision length scale L (Fig. 1D), we
thus separately consider how D and VC vary with speed (Fig. 2).
We computed the random component of motility, D, for each

speed bin based on a theoretical formulation recently derived for
run–reverse–flick motility (18), yieldingD = (V2/6) [(f + 4DR)/(f +
2DR)

2]. The reorientation frequency f was quantified from indi-
vidual bacterial trajectories (Fig. 3) and the rotational diffusivity
DR (measuring the gradual change in orientation during runs due
to Brownian rotation and off-axis propulsion) was obtained from a
resistive force model (11) (SI Materials and Methods). Two features
stand out from the computed values of the random motility. First,
D increases quadratically with speed, D ∼ V2, in the high-speed
regime (V > 30 μm/s), but linearly in the low-speed regime, where
D ∼ V (Fig. 2A, Inset, and Table S1). Thus, at high swimming
speeds, the effect of random motility in hindering tight accumu-
lation is not as strong. This feature, as will be seen below, is at the
heart of the high chemotactic precision of fast V. alginolyticus cells.
Second, run–reverse–flick swimming is characterized by a low

value of the random component of motility. This can be seen by
comparing D for V. alginolyticus and E. coli, where the latter was
calculated as D = V2/(3f(1 − α)) (2), with f = 1/s being E. coli’s
tumbling frequency and α = 0.33 being persistence, defined as
the mean of the cosine of the reorientation angle between runs.
When the comparison is performed at natural swimming speeds
[47.5 μm/s for V. alginolyticus (10); 19.7 μm/s for E. coli (Fig. 1E)
(2)], the random motility of V. alginolyticus (D = 160.8 μm2/s for
the speed bin V = 47.5 ± 1.4 μm/s) was 17% smaller than that of
E. coli (D = 193.1 μm2/s), despite the 2.4-fold higher speed. When
the comparison is performed at E. coli’s natural swimming speed
(using the speed bin V = 19.2 ± 2.2 μm/s for V. alginolyticus), the
random motility of V. alginolyticus (D = 44.5 μm2/s; Fig. 2A) was
77% smaller than that of E. coli (D = 193.1 μm2/s). This com-
parison confirms the prediction of a recent model (19) that run–
reverse–flick motility—owing to the presence of reversals—has
lower randomness than run-and-tumble motility, and the reduction
in the value of D determined here (77%) is quantitatively even

A B

Fig. 2. The random and directional components of swimming in V. alginolyticus
in a serine gradient (Fig. S1). (A) The random motility coefficient, D, and
(B) the chemotactic velocity, VC, as a function of swimming speed, V. Data
were collected over a range of sodium concentrations (3–600 mM) and
binned by speed. Insets show the same data in log-log format, with black
lines denoting the V and V2 slopes for reference (Table S1). For both
panels, horizontal error bars denote SDs of each speed bin.
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larger than that predicted theoretically (19) (50%). This reduced
diffusivity contributes to explain the much higher chemotactic
precision of V. alginolyticus compared with E. coli, both at natural
swimming speeds (CMC = 0.79 for V. alginolyticus swimming at
47.5 μm/s; CMC = 0.42 for E. coli swimming at 19.7 μm/s) and for
the same swimming speed (CMC = 0.66 for V. alginolyticus
swimming at 19.7 μm/s, obtained by interpolation of the CMC
values as a function of swimming speed) (Fig. 1E).
The chemotactic velocity, VC, was computed as VC = D/L

using the value of the length scale L determined from the ex-
ponential fit to the population accumulation profile (13) (Fig. 1D).
This revealed a quadratic dependence of VC on the swimming
speed, VC ∼ V2, over the entire range of swimming speeds (Fig.
2B, Inset and Table S1). This result is in line with predictions from
recent theoretical models for E. coli and V. alginolyticus (18, 20)
and, to the best of our knowledge, represents the first experimental
quantification of the dependence of the chemotactic velocity on
the swimming speed. The steady-state chemotactic velocities
ranged from VC = 0.2–3.5 μm/s (Fig. 2B), corresponding to a
relative chemotactic velocity VC/V of <10%. The ratio VC/V is a
measure of the directionality of the response: less than 10% of
the swimming speed of V. alginolyticus is on average directed up
the gradient at steady state. This level of directionality is on par
with that of E. coli, which often is in the range of 5–10% (21).
Although the relative chemotactic velocity can be higher for par-
ticular gradients and types of chemoattractants [up to 35% (21)],
our observations indicate that V. alginolyticus’ higher performance
in accumulating at resource peaks was not due to a higher
chemotactic velocity but rather to a lower random motility (Fig.
2A). This conclusion is also in line with a recent theoretical model,
which predicts that run–reverse–flick swimmers have lower diffu-
sivity but the same chemotactic velocity as run-and-tumble swim-
mers, for the same swimming speed (19).

Reduced Randomness at High Speeds Is Caused by an Enhanced
Reorientation Frequency. To understand the changeover between
a quadratic and a linear dependence of random motility on
swimming speed, which is at the origin of the speed-dependent
chemotactic precision of marine bacteria, we quantified single-
cell–level swimming kinematics—the reorientation frequency f
and the probability of flicking PF—as a function of swimming
speed (Fig. 3). The reorientation frequency, f, was computed by
identifying both the reversals and the flicks from trajectories (SI
Materials and Methods). A modulation of the reorientation fre-
quency is typically at the origin of the cells’ response to chemical
gradients (2, 4). Here, however, we also quantified f in the ab-
sence of gradients to focus on its dependence on swimming
speed, V (Fig. S4). We found that f increased linearly with V in
the low-speed regime (V < 30 μm/s) and was independent of V in

the high-speed regime (V > 30 μm/s) (Fig. S4B), and that the
same trend occurred in the presence of a serine gradient (Fig.
S4A), signifying that V. alginolyticus modulates its reorientation
frequency as a function of swimming speed.
This result explains the observed speed dependence of the

random motility. This can be seen by considering the theoreti-
cally predicted random motility for run–reverse–flick swimming,
D = (V2/6) [(f + 4DR)/(f + 2DR)

2] (ref. 18; described above), which in
the limit of negligible rotational diffusion (DR << f) becomes D =
(V2/6f). This relation predicts D ∼ V in the low-speed regime, where
f ∼ V, and D ∼ V2 in the high-speed regime, where f is independent
of V: both predictions successfully describe the observed dependence
of D on V (Fig. 2A, Inset, and Table S1).
Not only the frequency of all reorientations, f, depended on

swimming speed, but also and even more so the frequency of
flicks, fF, which displayed an approximately eightfold increase
from fF = 0.095 flicks per s at V = 13.3 ± 1.7 μm/s to fF = 0.78
flicks per s at V = 47.5 ± 1.4 μm/s (Fig. 3, brown). The frequency
of flicks is given by fF = f/2 × PF, where PF is the probability of
flicking (the probability that the onset of a forward run is im-
mediately followed by a flick; SI Materials and Methods). The
factor of 2 arises because flicks can occur at most every other
reorientation (i.e., only after the start of a forward run) (10). The
eightfold increase in fF with speed was due in part to a twofold
increase (from 1.1/s to 2.3/s) in the overall reorientation frequency,
f, and mostly to a fourfold increase in PF (from 18% to 68%) (Fig.
3). The increase of PF with V is in line with previous results in the
absence of chemical gradients (10) and was here also observed
in the presence of a gradient (Fig. 3, blue). The functional de-
pendence of both PF and fF on V mirrors that of the reorientation
frequency, f, and the chemotactic migration coefficient, CMC (Fig.
3, black), further highlighting the connection between the rate and
nature of reorientations and the chemotactic precision.
Our data suggest that the dependence of reorientation fre-

quency f, probability of flicking PF, and consequently flicking
frequency fF on the swimming speed V is largely independent of
gradient sensing. For PF, this conclusion is supported by the
biomechanics of flicking, which results from a buckling instability
that is independent of chemical gradients, as well as by a com-
parison of the dependence of PF on V in the presence (Fig. 3)
and absence (10) of a serine gradient. For f, the conclusion is also
supported by comparing observations in the presence (Fig. S4A)
and absence (Fig. S4B) of a serine gradient: even in homoge-
neous conditions, f depends strongly on V (Fig. S4B), and, small
differences in absolute values notwithstanding, this dependency
is similar with and without a gradient. Binning the data by so-
dium concentration allowed us to exclude the potential for this
observation to originate from physiological effects of different
sodium concentrations (10) (Fig. S4; gray symbols). This obser-
vation supports the conclusion that swimming speed itself is an
important determinant of the probability of flicking and the
reorientation frequency, irrespective of the presence or absence
of a chemical gradient. Because the modulation of the reorientation
frequency (in E. coli, the “tumbling rate”) is the basis of bacterial
chemotaxis (2, 4), this finding suggests that swimming speed plays a
key role in the chemotaxis of V. alginolyticus and possibly of other
marine bacteria, extending the current paradigm of chemotaxis
based on chemical information alone.

Chemokinesis Shifts the Swimming Speed of a Population into the
High-Speed Regime. The motility repertoire of V. alginolyticus
includes a further, important adaptation—chemokinesis—that is
intimately intertwined with the observed speed dependence of
swimming kinematics (Fig. 3) and chemotactic precision (Fig. 1
C and E). The quantification of the distribution of speeds within
a population of V. alginolyticus from single-cell trajectories
revealed strong and rapid chemokinesis, in the form of an overall
shift toward higher speeds (Fig. 4, Figs. S5 and S6, and SI Text).

Fig. 3. The swimming kinematics of V. alginolyticus reveal a low-speed (V <
30 μm/s) and a high-speed (V > 30 μm/s) regime. CMC (black circles), prob-
ability of flicking, PF (blue upright triangles), reorientation frequency, f (red
squares), and flicking frequency, fF (brown inverted triangle), as a function
of speed V in a serine gradient (as in Fig. S1). The green dashed line marks
the threshold, V = 30 μm/s, between the low-speed and the high-speed re-
gimes. Horizontal error bars denote SDs of each speed bin.
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Beyond the obvious effect of chemokinesis in enhancing che-
motactic speed by accelerating gradient climbing (11), we hypoth-
esized that chemokinesis in V. alginolyticus can significantly impact
chemotaxis because a change in swimming speed affects all of the
swimming kinematics, including the reorientation frequency and the
probability of flicking (Fig. 3), and thus the cells’ random motility
(Fig. 2A). Indeed, the observed chemokinetic speed increases are
sufficient to push a sizeable fraction of the population from the low-
speed regime (V< 30 μm/s) into the high-speed regime (V> 30 μm/s)
(Figs. 3 and 4, green dashed lines). For example, the addition of
0.5 μM serine increased the fraction of cells in the population swim-
ming at V > 30 μm/s from 39% to 70% (Fig. 4A). Chemokinesis is
thus implicated in the strong chemotactic response of V. alginolyticus,
because faster swimming results in higher chemotactic precision.

Speed-Dependent Chemotaxis Considerably Enhances Resource
Exposure. To understand how the different motility adaptations
of V. alginolyticus affect its chemotactic performance, we de-
veloped a mathematical model of chemotaxis that, in contrast to
E. coli’s (Fig. 5A), explicitly accounts for swimming speed, V, in
the chemotaxis pathway (Fig. 5B). The model is agent-based
(Materials and Methods) and considers variable reorientation
frequency (“block R”), chemokinesis (“block C”), and flicking
(“block F”), each of which depends on V (Fig. 5B). The model
successfully captured the observed chemotactic precision in a
linear chemoattractant field (Figs. S7A and S8B). We then ap-
plied it to Gaussian-shaped chemoattractant fields (Fig. S8 C
and D) that mimic those occurring in the dissolved organic
matter field in the ocean in the wake of sinking marine snow par-
ticles or around phytoplankton cells. We determined the relative
contribution of each motility adaptation to the population-level
resource exposure, by running the model for “in silico knockout
mutants” (each lacking one of the chemotaxis adaptations) and
comparing with the in silico wild-type cells having full chemotactic
functionality (Fig. 5C and Fig. S8 and SI Text).
The absence of individual adaptations resulted in both a

slower migration up the gradient (Fig. S8A) and a lower pre-
cision at steady state (Fig. 5C and Fig. S8 B–D). For the linear
gradient used in the experiments, inhibiting chemokinesis (ΔC),
flicking (ΔF), or reorientation frequency modulation (ΔR) led to
5.9–38.4% decrease in the resource exposure compared with in
silico wild-type cells (Fig. 5C). The percent reduction for the ΔC
knockout (5.9%) was comparable to the experimental value
(6.8%; SI Text). The impact of speed-dependent chemotaxis in-
creases considerably in more realistic, Gaussian-shaped resource

landscapes. For a 1D Gaussian field, the three mutants had a
31.7–37.2% decrease in resource exposure compared with wild-
type cells (Fig. 5C). For a 2D Gaussian field, the decrease was
even larger: 35.0–58.0% when chemokinesis was caused by serine
and 64.8–69.1% when it was caused by glucose (Fig. 5C). Com-
parison of the 1D and 2D scenarios suggests that the difference
will be even larger in a 3D patch—for example, a phytoplankton
phycosphere (22). Overall, these results show that the enhanced
chemotactic precision can make a substantial difference in the
ability of cells to exploit resource hot spots.

Discussion
Our results show that, contrary to what happens in the enteric
bacterium E. coli, swimming speed and its modulation are impor-
tant determinants of the chemotactic response in the marine bac-
terium V. alginolyticus. We identified two chemotactic regimes
based on speed. At low speeds (V < 30 μm/s), the bacteria’s dif-
fusivity D scaled linearly with V and their chemotactic velocity VC
scaled quadratically with V, so that the chemotactic precision length
scale L = D/VC ∼ 1/V decreased with increasing speed (Fig. 1D and
Table S1). In this regime, cells displayed constant run lengths due to
the increase in the reorientation frequency with speed (Fig. 3, red)
and their chemotactic precision increased with speed, as measured
by the increase in CMC with V (Fig. 1E). In contrast, at high speeds
(V > 30 μm/s), both D and VC scaled quadratically with V, so that
L = D/VC remained constant with speed (Fig. 1D and Table S1). In
this high–chemotactic-performance regime, run lengths increased
with speed, whereas the reorientation frequency was speed in-
dependent (Fig. 3, red) (2), and the cells’ chemotactic precision
saturated, as indicated by the constancy of the CMC with V (Fig.
1E). In summary, fast cells have in principle a large random motility
(D ∼ V2) and should thus disperse more around a chemoattractant
peak. However, fast V. alginolyticus cells offset this increase in
random motility by increasing their reorientation frequency (D ∼
1/f), and thereby effectively reduce the dispersion and increasing
their chemotactic precision.
Intriguingly, the distribution of swimming speeds in a V. algi-

nolyticus population under natural sodium conditions and in the
absence of chemoattractant gradients sits astride of the V = 30 μm/s
speed threshold separating the low- from the high-speed regimes
(Fig. 4A, cyan). This observation suggests that the speed distribution
and its modulation in the presence of chemical gradients result from
a trade-off between the nutrient uptake benefits from chemotaxis
and the energetic cost of locomotion, a cost–benefit framework
previously suggested for chemotaxis in turbulent flows (23). Because
uptake will increase with residence time in resource-rich regions, by

A B

Fig. 4. Chemokinesis shifts the population’s swimming speed toward the
high-speed regime. (A) Distribution of swimming speeds, p(V), within a
V. alginolyticus population in the absence (cyan) and presence (blue) of a serine
gradient (as in Fig. S1). (B) Temporal evolution of the swimming-speed distri-
bution after the uniform addition of 5 μM glucose (SI Materials and Methods).
Different shades of purple and magenta correspond to different times after
glucose addition (see Inset for time color coding). (B, Inset) Population-averaged
increase in swimming speed following 5 μM glucose addition, expressed as a
percentage of the speed at time 0. Horizontal error bars denote the width of
each time window. For both A and B, the green dashed line marks the speed
threshold V = 30 μm/s, experiments were performed at a sodium concentration
of 600 mM (typical of natural ocean conditions), and each curve is based on at
least 2,300 trajectories.

A B C

Fig. 5. A model of speed-dependent chemotaxis predicts a considerable
increase in resource exposure. (A and B) System view of chemotaxis shown as
block diagrams for (A) E. coli and (B) V. alginolyticus. In E. coli’s classic
pathway, the reorientation frequency f—whose modulation enables gradi-
ent climbing—is determined solely by the sensed ligand concentration LC
(block R). In contrast, our observations suggest the presence of additional
feedbacks in V. alginolyticus, including the ligand-dependent modulation of
the speed V (chemokinesis; block C), the speed-dependent load on the flagellar
hook that governs the probability of flicking PF (block F), and the speed-
dependent modulation of the reorientation frequency (block R). All of these
elements involve the swimming speed V. (C) Population-averaged resource
exposure of in silico mutants (color-coded as in B), expressed as a percentage
of the resource exposure of in silico wild-type cells (black bar). For each case,
four scenarios were evaluated, as described by labels over the bars.
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being able to localize with greater precision at the resource peak,
fast cells will have a fitness benefit over slow cells. At the same time,
the energetic cost of swimming increases quadratically with the
swimming speed (23), making fast swimming very costly relative to
the potential benefits of chemotaxis in the often resource-poor
marine environment (23). In this context, the cells’ active ability to
increase speed in favorable resource conditions—i.e., chemokinesis
(Fig. 4)—represents a desirable strategy to explore the environment
with reduced motility cost in the absence of nutrients, while acti-
vating the speed enhancement that yields the strongest chemotactic
performance when a favorable chemical environment is sensed.
Our observation supports this cost–benefit hypothesis, for two

reasons. First, the observed chemokinetic speed enhancement
shifts a considerable fraction of the population from below to
above the speed threshold (Fig. 4), resulting not only in a faster
transient response to gradients (11) but also in a tighter steady-
state accumulation of cells at the resource peak (Fig. 1 C–E).
Second, the observed speed modulation is rapid, with one-half of
the chemokinetic speed enhancement of a population occurring
over 2–4 min (Fig. 4B and Fig. S5). Although some nutrient hot
spots in the ocean are briefer than this, many last in the order of
10 min or more (5, 22, 23), indicating that chemokinesis can be
advantageous also at the single resource patch.
Our data on the speed dependence of the swimming kine-

matics raise the question of whether and how bacteria sense their
swimming speed (SI Text). Irrespectively of the origin of speed
sensing, we propose that V. alginolyticus integrates information
on its speed in its chemotaxis pathway as an additional system
input to regulate reorientation frequency (Fig. 5B). The success
of our model in capturing the experimental observations (Fig.
S7A) lends support to the hypothesis that speed is both a system
input and output of the chemotaxis pathway (Fig. 5B), and
highlights the need to better understand, at the molecular level,
both gradient sensing and speed sensing in Vibrios.
The results presented here reshape our understanding of

bacterial motility in the ocean by demonstrating the role of
swimming speed, its effect on reorientation frequency, and its
modulation through chemokinesis, in determining the precision
and speed of chemotaxis. The role of these motility adaptations
on the ability of bacteria to exploit gradients has received only
limited attention, largely owing to their absence in E. coli. The
frequent occurrence of these chemotaxis elements among marine
bacteria then suggests that speed-dependent chemotaxis may not be

limited to V. alginolyticus but might be prevalent among sea microbes
(11). Together with the large advantage in resource exposure affor-
ded by the increase in chemotactic precision (Fig. 5C), this evidence
suggests that this augmented form of chemotaxis, in which cellular
decision-making is based on both chemical information as well as the
cell’s own speed, might be pervasive among marine bacteria.
We surmise that the observed speed dependence of gradient

utilization among marine bacteria is related to the defining fea-
tures of the marine resource landscape at the microscale, which is
characterized by small, often ephemeral patches, pulses, and gra-
dients of chemicals (8), as well as ubiquitous fluid flow that both
stirs chemical resources (23) and influences bacterial motility (8).
A quantitative link between the specific behavioral adaptations
reported here and the features of the marine resource landscape
remains to be established, and points more in general at the need
for the development of an optimal foraging theory for bacteria.
The observation that marine bacteria use a form of chemotaxis that
is speed dependent demonstrates a previously unidentified, po-
tentially widespread element of bacterial chemotaxis, highlights the
rich adaptations in the spatial behaviors of marine bacteria, and
calls for a better understanding of the ecosystem consequences of
these behaviors.

Materials and Methods
Hydrogel-Based Microchannel and Cell Tracking. Both the chemotaxis and the
chemokinesis experiments were performed in a hydrogel-based microfluidic
device (Fig. S1) (SI Materials and Methods). The hydrogel agarose was used
at 2% (wt/vol) concentration in milliQ water to create diffusion-permeable
walls between adjacent microfluidic channels (Fig. S1). Bacteria were imaged
at 22 frames per second by phase contrast microscopy (Nikon Ti-E; 20×,
0.45 N.A.).

Computational Model of Chemotaxis. An agent-based model was used to
integrate in a general model of chemotaxis (24) the experimentally observed,
speed-dependent motility adaptations of V. alginolyticus. Each agent swims
in a 2D landscape made of a 1D linear, 1D Gaussian, or 2D Gaussian che-
moattractant field (SI Materials and Methods). The population-level resource
exposure was computed by weighting the chemotactic response for each
speed bin with the percentage of cells in that speed bin.
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SI Materials and Methods
Experiments and Analysis.
Cell culturing. Vibrio alginolyticusYM4 strain was cultured overnight
in VC medium [0.5% (wt/vol) polypeptone, 0.5% yeast extract,
0.4% K2HPO4, 3% (wt/vol) NaCl, 0.2% glucose], diluted 1:100
into VPG medium [1% polypeptone, 0.4% K2HPO4, 3% (wt/vol)
NaCl, 0.5% glycerol] (6), and grown to late-exponential phase
(OD600 = 0.5). Cells were then washed and resuspended in TMN
motility medium [50 mM Tris·HCl (pH 7.5), 5 mM MgCl2, 5 mM
glucose, 300 mM NaCl plus KCl] to change the final sodium
concentration, [Na+], which for different experiments was in
the range of 3–600 mM. This was done to exploit the sodium-
dependent swimming speed of V. alginolyticus, whose flagellar mo-
tor is driven by sodium gradients (10). The difference in [Na+] was
replaced with potassium to maintain osmolarity, a common ap-
proach found to be devoid of other physiological consequences (10).
PDMS microchannel fabrication and hydrogel injection. Both the che-
motaxis and the chemokinesis experiments were performed in
a hydrogel-based microfluidic device (Fig. S1), which was fabri-
cated in two steps: (i) polydimethylsiloxane (PDMS) microchannel
fabrication, and (ii) hydrogel injection.
Microchannels were fabricated using standard soft lithography

techniques with a mold prepared by depositing SU-8 photoresist
(MicroChem Corporation) on silicon wafers and patterning chan-
nel reliefs via photolithography. The mold was silanized with tri-
chloromethylsilane (Sigma-Aldrich) to prevent PDMS (Sylgard 184
Silicone Elastomer Kit; Dow Corning) from adhering to the master,
especially between the hydrogel-trapping pillars (Fig. S1), and to
ease the demolding process. PDMS prepolymer (10:1 mixture of
base and curing agent of Sylgard by Dow Corning) was cured by
baking at 65 °C for >1 h. PDMS microchannels were then cut and
bonded to a clean glass slide via plasma treatment and incubated on
a hot plate at 100 °C for 1 h.
The hydrogel agarose was used at 2% (wt/vol) concentration in

milliQ water to create diffusion-permeable walls between adja-
cent microfluidic channels (Fig. S1). Liquid agarose was injected
between arrays of trapping pillars made of PDMS through
channel C (Fig. S1). Two features fabricated downstream of the
inlet for the hydrogel (inlet C1)—a serpentine and a reservoir—
served as visual indicators to guide the agarose injection process.
Agarose was slowly injected through the inlet port C1 using a
syringe pump at a constant flow rate (2–5 μL/min) and the in-
jection process was continuously monitored using an inverted
microscope (Nikon Ti-E microscope) by following the front of
the meniscus, to ensure accurate creation of the hydrogel wall.
Hydrogel injections were conducted on a temperature-controlled
stage to prevent liquid agarose from solidifying too rapidly during
the sequential injection of liquid agarose in the serpentine, res-
ervoir, branching channels, and hydrogel walls. After completing
the injection step, milliQ water was injected into channels A, B,
and D before experiments to prevent trapping of air pockets in
between the PDMS pillars.
Gradient creation.For all of the chemotaxis experiments, the source
channel (A) carried 500 nM serine and the sink channel (B)
carried buffer (0 nM serine), both flown at a flow rate of 5 μL/min
(Fig. S1). This resulted in the formation of a steady linear serine
concentration profile, C(x), increasing from 100 to 400 nM across the
width of the test channel (D) where bacteria were located (Fig. S1).
For the steady-state chemokinesis quantifications, the source

channel (A) carried 50, 100, or 500 nM serine (Fig. S6) and the
sink channel (B) carried buffer (0 nM serine). For the transient-
phase chemokinesis experiments (Fig. 4B and Fig. S5), 5 μM

serine or glucose were uniformly added in the source and sink
channels.
Cell imaging and tracking.Swimming bacteria were imaged at channel
middepth at 22 frames per s by phase contrast microscopy (Nikon
Ti-E microscope; 20×, 0.45 N.A. objective) using a digital camera
(Andor Zyla; 6.5 μm/pixel). All analyses were performed in Matlab
(The Mathworks) using in-house, automated software to track
cells, and reconstructed trajectories were smoothed using a second-
order Savitztky–Golay filter (window size, 182 ms). Based on these
trajectories, we binned trajectories by their mean speed, as de-
scribed before (10).
Identification of reversals and flicks. Reorientations were identified
as sharp changes in direction or “kinks” in the trajectories.
V. alginolyticus alternates between forward and backward swim-
ming, in a “run–reverse–flick” motility pattern (6). Every second
reorientation is a “reversal,” a change in swimming direction
narrowly distributed around 180°, which results from the reversal
in the direction of swimming. Every other reorientation may also
be a reversal, but has a certain probability PF of instead being a
“flick” (10), a change in swimming direction distributed around a
mean of 90° (6).
Two simultaneous criteria were used to identify reorientations,

as described previously (10): (i) a high rate of change of swim-
ming direction and (ii) a low instantaneous swimming speed.
First, to identify changes in the swimming direction, at every
time point along a trajectory we calculated the dot product of the
swimming velocities before and after that point (directional co-
sine). We then identified as reorientation events all local minima
in the directional cosine (equivalent to local maxima in the in-
stantaneous angular speed) that additionally fell below a threshold
value of 0.985, corresponding to a directional change of at least 10°.
Second, to identify reorientation events having a change in angle
below the 10° detection threshold, we used swimming-speed in-
formation, because any reorientation is expected to be accompanied
by a brief reduction in swimming speed. Based on this second cri-
terion, we identified all local minima in the instantaneous swimming
speed that are below 50% of the mean speed of the trajectory.
The absolute reorientation angle, Δθ, defined as the angle between
the swimming velocities before and after a reorientation, and the
reorientation frequency, f, were then quantified from all trajec-
tories containing at least one reorientation (to compute Δθ) or
at least two reorientations (to compute f). After classifying
reorientations as either the flicks or reversals, the probability of
flicking was quantified as the relative occurrence of flicks among all
of the reorientations, multiplied by 2 to account for the flicks that
can only occur after a backward run.
Rotational diffusion. The trajectories of swimming bacteria are af-
fected by rotational diffusion. The value of the rotational dif-
fusion coefficient during runs, DR = 0.035 rad2/s, was calculated
based on a resistive force model (11) that accounted for both the
cell body (3.2 μm long and 1.2 μm wide) and the helical flagellum
(contour length, 4.6 μm; pitch, 1.5 μm) of the same strain of
V. alginolyticus previously reported (10).
Resource exposure.To quantify the consequences of different levels
of chemotactic precision on potential nutrient uptake (“resource
exposure”), we used the CMC values (Fig. 1E).
The population-averaged resource exposure,NT =

R Vmax

0 CMCðV Þ ·
PðV ÞdV, was computed as the weighted average of the CMC
values over all speed bins (with weights proportional to the
number of cells in each speed bin), both with and without the
chemokinetic speed enhancement (Fig. 4A). Here, P(V) is
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the swimming-speed distribution and Vmax is the maximum swim-
ming speed observed in the experiments (Fig. 4A).

Computational Model of Chemotaxis. To capture the chemotactic
behavior of V. alginolyticus, we used a modeling framework based
on cellular automata (or individual based model). In the model,
each cell is referred to as an “agent.” In the absence of more
detailed information about the molecular mechanisms of sig-
naling events governing chemotaxis in V. alginolyticus, we adap-
ted the model of Jackson (24). We modeled the individual agents
to implement the block schemes illustrated in Fig. 5B and to
proceed in one of two modes: either a “forward run” or “back-
ward run,” representing in a real cell a CCW and CW rotation of
the polar flagellum (as seen from behind), respectively. The
agent runs in a straight trajectory in each of these modes, onto
which random noise in orientation is added to mimic rota-
tional diffusion (DR = 0.035 rad2/s). For simplicity, we further
assumed that reorientations in between runs are instantaneous
(both reversals and flicks), that reversals are perfect inversions of
swimming direction (180°), and that all flicks are 90° reorientations
(6). Based on these considerations, in our modification of Jackson’s
model, we modeled V. alginolyticus’ forward and backward swim-
ming as Escherichia coli’s runs and V. alginolyticus’ reorientations
(either reversals or flicks) as E. coli’s tumbles.
As in the study by Jackson, we set the probability that at a

generic time t an agent will experience a reorientation within a
time interval Δt as follows:

Pt =
Δt
τ
, [S1]

where the mean run time can be expressed as follows:

τ= τ0e
αC

dPb
dt , [S2]

with

dPb

dt
=

1
Tm

Z t

−∞

dPb

dt′
e
t′−t
Tmdt′ [S3]

and

dPb

dt
=

KD

ðKD +CÞ2
dC
dt

, [S4]

where C is the chemoattractant concentration in the extracellu-
lar environment, Tm is a time constant of the bacterial system
(taken to be 0.1 s), τ0 is the mean run time in the absence of
concentration gradients, that is, the average unbiased run time,
αC is a constant of the system (taken to be 30 s), Pb is the fraction
of a cellular protein surface receptor bound by the substrate,
dPb=dt is the weighted time rate of change of Pb, and KD is the
half-saturation constant of the surface receptor binding to the
chemoattractant (here, serine).
Parameter identification.The chemotaxis parameters forV. alginolyticus
responding to serine remain unknown; therefore, we had
to identify them using other approaches, described in the
following.

Reorientation frequency. For the reorientation frequency, f , we
have direct observational data as a function of speed from our
analysis. In the model, we implemented the speed-dependent
reorientation frequency (Fig. 3) by fitting a phenomenological
model of the following form:

f ðvÞ=
�

η

1+ eζðv−vtÞ
+ θ

�−1

, [S5]

to the observations, where parameters of best fit were found to be
η = −0.3942 s/μm, ζ = −0.2019 s/μm, vt = 18.88 μm/s, and θ =
0.8452 s/μm.

Flicks. In the model, flicks are implemented as instantaneous
reorientations [neglecting the ∼10-ms interval between the re-
versal and the flick (10)] with a reorientation angle of ±90° (with
equal probability). Consistent with prior observations, flicks
could occur in the model only after a backward-to-forward
transition (6, 10). To determine whether an agent flicked or
reversed in that case, a uniformly distributed random variable
was compared with the speed-dependent probability of flick-
ing PF, which is approximated by a logistic function, PF =
0.055+ 0.72=½1+ e−0.25ðv−36Þ�, determined previously (10). This
approach summarizes the contribution of block F to the che-
motaxis pathway in Fig. 5B.

Chemokinesis. Chemokinesis was implemented in the model as
an instantaneous speed enhancement of 30% as a result of in-
creased chemoattractant availability (Fig. S6), in line with a pre-
vious mathematical model (11). Therefore, each agent has, at each
time point, a speed vðx, y, tÞ that depends on the local con-
centration of chemoattractant cðx, yÞ according to the follow-
ing rule:

vðx, y, tÞ=
�
vi · 1.3 if   cðx, yÞ≥ cT
vi if   cðx, yÞ< cT

,

where cT is the concentration of chemoattractant above which we
observed a chemokinetic speed enhancement in our experiments
(50 nM; Fig. S6), and vi is the speed each agent is initialized to at
the beginning of the simulation (to represent the different speed
bins observed experimentally). This approach reflects the exper-
imental observations both in the presence and absence of a ser-
ine gradient (Fig. 4A).

Sensing. The parameters of the sensing model determine the
dynamics of the block R (Fig. 5B). Here, our ability to determine
Tm,KD, and  αC is limited by the lack of information on the mo-
lecular mechanism governing chemotaxis in V. alginolyticus. To
overcome this limitation, we identified the values of these pa-
rameters using a combination of information from the literature
and parameter fitting. In particular, based on previous results for
marine bacteria (25), we constrained Tm to the range 0.1–1 s and
KD to the range 1–10 μM. Within these two constrains, a value of
Tm (0.1 s) was chosen based on the experimentally observed run
time, which is typically in the order of 0.1 s (Fig. 3), and a value
of KD (10 μM) was chosen based on a recent model of Vibrio
coralliilyticus (11). After fixing these two sensing parameters,
we heuristically determined the remaining parameter, αC (30 s),
so as to minimize the discrepancy between the predicted CMC
(Fig. S7A) and the experimentally measured CMC (Fig. 1E).
Importantly, although the specific value of CMC predicted by
the model depends as expected on the specific choice of pa-
rameters, the predicted speed dependence of the CMC was
robust to moderate changes in the parameters over realistic
ranges.
Simulation of the trajectories of individual agents. With the chosen
parameters, the model numerically integrated the trajectories of
individual agents swimming in (i) a linear, steady chemoattrac-
tant gradient, directly mimicking the microfluidic setup used in
the experiments (Fig. S1); (ii) a 1D Gaussian chemoattractant
field; and (iii) a 2D Gaussian chemoattractant field. For each
case, 3,000 agents were initially distributed uniformly with ran-
dom orientations in (i) a 600-μm-wide channel for the 1D linear
gradient case, with the chemoattractant field directly replicating
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the one established in the microfluidic setup used for experiments
(from 100 to 400 nM; Fig. S1); (ii) a 3,000-μm-wide channel for
the 1D Gaussian case, with a maximum chemoattractant con-
centration of 266 nM; and (iii) a 3,000 × 3,000-μm square domain
for the 2D Gaussian case, with the same maximum chemo-
attractant concentration of 266 nM. The mean and the SD were
1,500 and 450 μm, respectively, for the 1D and 2D Gaussian
profiles. The initial swimming speed of each agent was chosen
randomly from the range of speeds observed (Fig. 4A, cyan).
Agents in the simulations did not interact with each other and they
reflected in a random direction upon hitting hard boundaries on
the left and right sides of the domain in the 1D simulations and
on all four boundaries in the 2D simulations. Agents were con-
stantly affected by rotational diffusion, responsible for a random
reorientation component in the swimming trajectories (as de-
scribed above).
Simulation data analysis. The analysis of the simulations was done
as follows.

The 1D linear chemoattractant field. Trajectories were integrated
for 7,000 s, a time found to be sufficient for agents to reach a steady
spatial distribution, B(x) (Fig. S7B). Then the analysis followed the
same steps as in the experimental data: we binned the bacterial
distributions along the gradient by swimming speed, using the
same upper and lower bounds of speed as in the experiments, and
for each distribution B(x), we computed the CMC (Fig. S7A). In
addition to in silico wild-type cells with full chemotactic func-
tionality, we also simulated in silico knockout agents, for which
one or more of the functions in Fig. 5B were removed in the
model. Relative comparisons of the CMC values between in silico
wild-type cells and in silico knockout mutants (Fig. S8B) were
made using the same set of parameters identified above. All of the
simulations reached steady state within 7,000 s, as for the in silico
wild-type cells.
From the model runs, normalized steady-state bacterial dis-

tributions, B(x), and the corresponding CMC values of agents
swimming at 10 different speeds (300 trajectories each) were
plotted (Figs. S7A and S8B) by averaging over the last 35 s in the
7,000-s-long simulations (Fig. S7B). The population-level re-
source exposure (Fig. 5C) was computed as for the experimental
results (SI Text). Furthermore, in the simulations, we made di-
rect comparisons between in silico wild-type cells and in silico
knockout mutants based on the CMC values (Fig. S8B), which
were weighted by the speed distribution P(V) to obtain a pop-
ulation-level resource exposure, as NT =

R Vmax

0 CMCðV Þ ·PðV ÞdV
(Fig. 4).
For the simulations, we further computed the accumulation

time, TAðV Þ, based on the full time course of the transient re-
sponse (e.g., Fig. S7B). TAðV Þ is defined as the time taken by the
CMC to reach one-half of the maximum value of the CMC of in
silico wild-type cells having the same swimming speed but full
chemotactic functionality (Fig. S8A). The population-averaged
accumulation time, hTAi, was then computed by weighting TAðV Þ
by the speed distribution, P(V), as hTAi=

R Vmax

0 TAðV Þ ·PðV ÞdV.
The 1D and 2D Gaussian chemoattractant fields. Having obtained

good agreement between the model and the experimental ob-
servations (Fig. 1 C and E, and Fig. S7A) for the case of a 1D,
linear chemoattractant field, we applied the model to 1D and 2D
Gaussian chemoattractant fields, which more realistically cap-
ture the main features of resource hotspots in marine environ-
ments (22). Trajectories were integrated for 1,000 s. This timescale
was chosen based on a recent study showing that the chemotactic
accumulation of bacteria in the microenvironment surrounding
individual phytoplankton cells enriched in dissolved organic mat-
ter lasts in the order of 10–20 min (22). The CMC, used in the
linear gradient case, is not applicable as a metric to quantify the
magnitude of the chemotactic response in Gaussian chemical
profiles. Instead, we used the chemotactic index, IC, following
previous literature (11). IC measures the enhancement in the cell

concentration within the central region of the Gaussian (a 500- μm-
wide band for the 1D, Gaussian case; a 500-μm-diameter circle for
the 2D Gaussian case), relative to the cell concentration outside
that area, minus 1. IC = 0 thus corresponds to a uniform cell dis-
tribution (that is, no chemotaxis).
The analysis then followed largely the same steps as described

above for in silico wild-type cells and in silico knockout mutants.
From the model runs, the IC values of agents swimming at eight
different speeds (375 trajectories each) were plotted by averag-
ing over the last 100 s in each simulation and compared between
in silico wild-type cells and in silico knockout mutants (Fig. S8 C
and D). The population-level resource exposure (Fig. 5C) was
computed by weighting the chemotactic response for each speed
bin (Fig. S8 C and D) with the percentage of cells in that speed
bin from the experimentally measured speed distribution P(V)
(Fig. 4), as NT =

R Vmax

0 ICðV Þ ·PðV ÞdV.
SI Text
Chemokinesis. Several species of marine bacteria exhibit chemo-
kinesis. Pseudoalteromonas haloplanktis was found to increase its
speed by 23% in response to algal exudates (26), the coral
pathogen V. coralliilyticus (11) increases its speed by up to 48%
when exposed to coral mucus, and Shewanella putrefaciens, Deleya
marina, as well as an enriched assemblage of marine bacteria in-
creased their speed by ∼20% in response to various amino acids
(12). Chemokinesis can enhance chemotaxis by increasing the
swimming speed of the cells and thus the rate at which they climb
chemical gradients (11), as demonstrated by a mathematical model
based on observations of V. coralliilyticus (11).
In the presence of a serine gradient (0.5 nM/μm; Fig. S1), we

observed a 33% increase in the population-averaged speed with
respect to a population swimming in the absence of serine (Fig.
4A). Similar and sometimes higher speed increases were ob-
served for a range of serine gradients and for different sodium
concentrations (Fig. S6). Chemokinesis was also observed in the
absence of a chemical gradient, with the spatially uniform ad-
dition of 5 μM serine causing a 20% increase (Fig. S5), whereas
up to a 82.3% increase was observed for other attractants such as
glucose (Fig. 4B). The level of chemokinetic speed enhancement
observed in this study (Fig. S6) is comparable to those reported
in other marine bacteria (11, 26).
The population-averaged resource exposure (SI Materials and

Methods), defined here as the mean serine concentration expe-
rienced by the population and a determinant of nutrient uptake,
indicates that, by reducing the chemotactic precision, the ab-
sence of chemokinesis (Fig. 4A) resulted in a 6.8% reduction in
the resource exposure of the population.
We also found that the chemokinetic speed increase was rapid.

This is shown for example by the temporal dynamics of the dis-
tribution of speeds after a uniform addition of 5 μM serine (Fig.
S5), where a 17% increase in the population-averaged swimming
speed occurred within 127 s (and a 20% increase overall), or a 5 μM
glucose addition (Fig. 4B), where a 58% increase in speed occurred
within 226 s (and an 82% increase overall). Therefore, chemo-
kinesis not only boosts chemotaxis because of the enhanced che-
motactic speed from the quadratic dependence of the chemotactic
velocity VC on the swimming speed V (Fig. 2B), as previously found
for example in V. coralliilyticus (11), but also lifts a considerable
fraction of V. alginolyticus cells from the low-speed to the high-
speed regime and thereby improves their chemotactic precision
(Fig. 1 C–E), owing to the dependence of the reorientation kine-
matics on the swimming speed (Fig. 3).

A Model of Speed-Dependent Chemotaxis. To understand how the
different elements of V. alginolyticus’ motility combine to de-
termine its chemotactic response, we developed an agent-based
model that incorporates all our experimental observations (Figs.
3 and 4) as inputs (SI Materials and Methods). In the absence of
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species-specific molecular information on gradient sensing in
V. alginolyticus, we used a general model of chemotaxis (24) as
our starting point, in which each bacterium swims in a 2D land-
scape containing a spatially heterogeneous chemoattractant con-
centration. In classic models of chemotaxis, mainly developed for
E. coli, the ligand concentration LC measured over time is the only
control parameter of the chemotaxis pathway (4) and is processed
by what we call a “reorientation frequency block” (R) that yields
the reorientation (or, in E. coli, “tumbling”) frequency, f, as the
pathway’s output (Fig. 5A: LC → R → f).
Our experimental observations of V. alginolyticus led us to

augment this model by including the swimming speed, V, as both
an input and an output in the chemotaxis model (Fig. 5B and SI
Materials and Methods). The model accounts for (i) the chemo-
kinetic behavior, by including a modulation of the swimming
speed based on the resource concentration (the “chemokinesis
block,” C, in Fig. 5B: LC → C → V); (ii) the variable reorientation
frequency, which depends not only on the sensed ligand concen-
tration LC (Fig. 5B: LC → R → f), as in the classic pathway (4), but
also on the swimming speed (through the “reorientation frequency
block,” R, in Fig. 5B: V → R → f); and (iii) the linear dependence
on swimming speed of the propulsive load, which determines the
buckling of the flagellar hook (10) and thus the second output of
the system, the probability of flicking (the “flick block,” F, in Fig.
5B: V → F → PF). The model thus implements the run–reverse–
flick motility pattern, when one also imposes that all reorientations
that are not flicks are reversals, as observed experimentally (6, 10).
We ran the model for 3,000 bacteria swimming in a linear che-
moattractant field (SI Materials and Methods), directly mimicking
the microfluidic setup used in experiments (Fig. S1) and confirmed
that it successfully captured the experimentally observed speed-
dependent chemotactic precision of V. alginolyticus (Fig. S7). Fur-
thermore, the predicted distributions B(x) were accurately fitted by
exponentials, as in the experiments (Fig. S7A, Insets).

In Silico Knockout Mutants. How do chemokinesis, flicking, and
reorientation individually contribute to shaping the chemotactic
response we observe in V. alginolyticus? In the absence of a con-
venient way to genetically manipulate our model organism and
address this question studying mutant strains, we used the model
to assess the impact of “in silico knockouts” on V. alginolyticus’ che-
motaxis. We assessed how chemokinesis, flicking, and reorientation
individually contribute to shaping the chemotactic response in
V. alginolyticus by selectively inactivating individual functions in
our model (i.e., blocks C, F, or R in Fig. 5B). In silico mutants
lacking chemokinesis (ΔC) swim at a constant speed, in silico
mutants lacking flicks (ΔF) only reverse, and in silico mutants
lacking the ability to modulate their reorientation frequency with
increases in speed (ΔR) had a reorientation frequency of 1/s, in
line with that of the slower cells in the population (Fig. 3) and,
incidentally, of E. coli (2). We quantified how three metrics of
chemotaxis—chemotactic speed (Fig. S8A), chemotactic pre-
cision (Fig. S8 B–D), and resource exposure (Fig. 5C)—were
affected by each in silico mutation.
Chemotactic speed.The chemotactic speed during the transient part
of the chemotactic response was quantified in terms of the ac-

cumulation time, TA (SI Materials and Methods and Fig. S8A), for
the linear gradient case, mimicking the experimental setup (Fig.
S1). TA is speed dependent (Fig. S8A) and the lack of chemo-
kinesis (ΔC), flicking (ΔF), or variable reorientation frequency
(ΔR) considerably increased the population-averaged accumu-
lation time compared with in silico wild-type cells with full
functionality (<TA> = 96 s), by a factor of 4.3 (<TA> = 413 s),
2.7 (<TA> = 259 s), and 3.0 (<TA> = 288 s), respectively (Fig.
S8A, Inset). All three adaptations were important during the
transient phase of chemotaxis (Fig. S8A). Chemokinesis favors
chemotaxis during the transient phase by accelerating the gra-
dient climb, flicking ensures more effective space exploration
and gradient sampling over reversals alone, and modulating the
reorientation frequency with speed enables faster cells to offset
their random motility by more frequent trajectory corrections.
Chemotactic precision. The CMC and IC values in the absence of
chemokinesis (ΔC) lie on top of the steady-state curves at slower
speed bins (Fig. S8 B–D, compare blue and black). Removing
flicks (ΔF) influenced the chemotactic performance differently
for different swimming speeds (Fig. S8 B–D, compare green and
black). When flicks were inhibited and all reorientations were
reversals, the CMC and IC values decreased mainly in the high-
speed regime (V > 30 μm/s) where flicks were originally domi-
nant (Fig. S8 B–D and Fig. 3). Removing the ability to modulate
reorientation frequency with speed (ΔR) resulted in a consider-
able decrease of the CMC and IC values, except for the low-speed
bins (Fig. S8 B–D, compare red and black). The population-level
resource exposure for three different resource landscapes was
computed for each of these in silico mutants and compared
with agents with in silico wild-type cells, as shown in the main
text (Fig. 5C).
As shown, the absence of individual functions resulted in a

reduced chemotactic performance, in terms of both a slower
migration speed up the gradient during the transient phase of
chemotaxis (Fig. S8A) and a lower level of precision at steady
state (Fig. S8 B–D). This effect becomes more dramatic for cells
swimming in more realistic chemical gradients, more closely
mimicking the shape of gradients occurring at the microscale in
the marine environment (Fig. S8 C and D). These results illus-
trate that all of the motility adaptations described in the che-
motaxis pathway of V. alginolyticus are important components of
the speed-dependent chemotactic precision of this bacterium.

Mechanosensing. One potential mechanism of swimming-speed–
sensing mechanism in bacteria is mechanosensing, the ability to
sense mechanical signals such as forces and torques. It has been
recently shown that the mechanical load on the motor, sensed at
the level of the stator, can contribute to regulate the tumbling
rate in E. coli (3). Mechanosensing has also been reported in
Vibrios (27), where inhibition of the rotation of the polar fla-
gellum due to increased viscous resistance—for example, near
surfaces or for increased fluid viscosity—leads to the formation
of myriad of lateral flagella for swarming motility through in-
duction of the lateral flagellar gene (laf) expression. An alterna-
tive to sensing force is sensing swimming speed directly, because
speed is linearly proportional to motor rotation rate.
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Fig. S1. Hydrogel-based microfluidic device used to quantify the chemotactic response of V. alginolyticus in a steady, linear concentration profile of serine.
Channel D is the test channel (width W = 600 μm), where bacteria reside and are observed by video microscopy. Inlets are marked by a “1,” outlets by a “2.”
Channel A is the source channel, carrying 500 nM serine, and channel B is the sink channel, carrying buffer (0 nM serine). Channel C is used before the ex-
periments, for the fabrication of two 200-μm-wide hydrogel walls by injection of liquid agarose between arrays of PDMS pillars used for containment (Ma-
terials and Methods). Once agarose solidifies, it results in two hydrogel walls separating the test channel from the source and sink channels (Inset), which are
permeable to diffusion of serine and thus enable the formation of a linear serine concentration profile, C(x) (from 100 to 400 nM), across the test channel
(x direction; Inset and Fig. S2). All channels are 100 μm deep. During an experiment, the inlet D1 and the outlet D2 are sealed with glass coverslips to create a
flow-free condition in the test channel. The imaging window covers the whole width W (600 μm) of the test channel and cells were imaged at 15 locations
along the length of the test channel.
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Fig. S2. Steady-state serine concentration field (color map) inside the microfluidic channel modeled numerically (Fig. S1). The zoomed-in view shows the
concentration contour lines near the hydrogel-trapping PDMS pillars (white rectangles), illustrating that the concentration field inside the test channel be-
comes homogeneous in the along-channel direction within 20 μm from the pillars.

Fig. S3. Experimentally observed temporal evolution of the CMC during the transient phase (<350 s) and at steady state (>500 s) for V. alginolyticus cells
swimming at different speeds in the same serine gradient as in Fig. S1.
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Fig. S4. (A and B) The reorientation frequency, f, as a function of the swimming speed in the (A) presence and (B) absence of a serine gradient. Red symbols
include data acquired over all sodium concentrations (3–600 mM), and gray symbols refer to data for individual sodium concentrations (see legend in B). For all
panels, horizontal error bars denote SDs of each speed bin. Where not visible, horizontal error bars are smaller than symbols.

Fig. S5. Temporal evolution of the swimming speed distribution, p(V), plotted at different times after the uniform addition of 5 μM serine (SI Materials and
Methods). Different shades of blue correspond to different times after serine addition (see Inset for time color coding). The green dashed line marks the speed
threshold V = 30 μm/s. Experiments were performed at a sodium concentration of 600 mM. Each curve contains information from at least 570 trajectories.
(Inset) Population-averaged increase in speed following the serine addition, expressed as a percentage of the speed at time 0. Horizontal error bars denote the
width of each time window.
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Fig. S6. Mean chemokinetic speed enhancement at steady state as a percentage of the swimming speed before chemical addition, for various chemo-
attractants (different symbol colors) and different sodium concentrations (different symbol shapes). Shown on the Left (blue background) is a case in which a
gradient of serine was present for the steady-state chemokinesis experiments. The source channel (A in Fig. S1) carried 50, 100, or 500 nM serine, and the sink
channel (B in Fig. S1) carried buffer (0 nM serine) (SI Materials and Methods). The concentration plotted on the x axis for these cases is the concentration in the
source channel, and the speed increase was computed over the entire population, over the entire gradient. Shown on the Right (green background) is a case in
which serine, glucose, or their nonmetabolizable analogs were added uniformly in both the source and sink channels at a concentration of 5 μM at natural
sodium conditions (600 mM). The speed increase was computed again over the entire population, over the entire channel width.

Fig. S7. (A) Model prediction of the steady-state chemotactic migration coefficient (CMC) as a function of swimming speed (compare with Fig. 1 C and E).
Horizontal and vertical error bars denote SDs of each speed bin and the CMC, respectively. Where not visible, error bars are smaller than symbols. (Inset)
Steady-state bacterial distribution, B(x), predicted by the model for agents swimming at 10 different speeds (SI Materials and Methods). For all speeds, B(x) was
well fitted by an exponential distribution (see R2 values in the second Inset), as in the experiment (Fig. 1C). B(x) was normalized to a mean of 1. (B) Temporal
evolution of the CMC for agents swimming at 10 different speeds (300 agents for each speeds) from the mathematical model (SI Materials and Methods).
Agents from the slowest speed fraction required >6,000 s to reach steady state.
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Fig. S8. Each of the individual functions comprising the proposed chemotactic pathway of V. alginolyticus is an essential component of its high chemotactic
precision and speed. (A) Model prediction of the accumulation time, TA, in a linear gradient for the same in silico mutants (SI Materials and Methods) lacking
the ability to modulate reorientation frequency (block R in Fig. 5B; ΔR; red), to have chemokinesis (block C in Fig. 5B; ΔC; blue), or to flick (block F in Fig. 5B; ΔF;
green). The black circles represent agents having full chemotactic functionality (in silico wild-type cells; same data as in Fig. S7A). (A, Inset) Relative time delay of
in silico mutants, computed with respect to the accumulation time of in silico wild-type cells (black). (B) Model prediction of the chemotactic migration coefficient
(CMC) for an in silico knockout mutant (SI Materials and Methods and SI Text). (C and D) Model prediction of the chemotactic index, IC, for in silico knockout
mutants (SI Materials and Methods and SI Text) lacking the ability to perform chemokinesis (block C in Fig. 5B; ΔC; blue), to flick (block F in Fig. 5B; ΔF; green), or
to modulate their reorientation frequency based on swimming speed (block R in Fig. 5B; ΔR; red), for a population swimming in (C) a 1D Gaussian chemo-
attractant field and (D) a 2D Gaussian chemoattractant field (Materials and Methods).

Table S1. Dependence of population-level swimming statistics and single-cell–level swimming kinematics on the
swimming speed, V, in the low-speed regime (V < 30 μm/s) and the high-speed regime (V > 30 μm/s)

Parameter Symbol Units Scaling at low-speed regime Scaling at high-speed regime

Chemotactic precision length L μm ∼V−1 ∼Constant
Chemotactic velocity VC μm/s ∼V2 ∼V2

Random motility D μm2/s ∼V ∼V2

Reorientation frequency f 1/s ∼V ∼Constant

The different functional dependence of D and VC on the swimming speed V (Fig. 2 A and B, Insets) is at the origin of the speed
dependence of the chemotactic precision of V. alginolyticus (Fig. 1). In the high-speed regime, both D and VC scale quadratically with V,
and thus the precision of the chemotactic accumulation, measured by L = D/VC (Fig. 1D), is speed independent. In contrast, in the low-
speed regime, VC again scales quadratically with V but D scales linearly with V; hence, L = D/VC ∼ 1/V decreases with increasing speed
(Fig. 1D), resulting in higher chemotactic precision with increasing swimming speed.
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