Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis

Andrea Giomettoa,b,1, Florian Altermattb,c, Amos Maritanb, Roman Stocker, and Andrea Rinaldoa,f,1

Laboratory of Hydrodynamics, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; bDepartment of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, CH-8603 Dübendorf, Switzerland; cInstitute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland; dDepartment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and eDipartimento di Ingegneria Civile, Edile ed Ambientale, Università di Padova, I-35131 Padua, Italy

Edited by Edward F. DeLong, University of Hawaii, Manoa, Honolulu, HI, and approved April 15, 2015 (received for review December 1, 2014)

Phototaxis, the process through which motile organisms direct their swimming toward or away from light, is implicated in key ecological phenomena (including algal blooms and diel vertical migration) that shape the distribution, diversity, and productivity of phytoplankton and thus energy transfer to higher trophic levels in aquatic ecosystems. Phototaxis also finds applications in biofuel reactors and microbiopropellers and is argued to serve as a benchmark for the study of biological invasions in heterogeneous environments owing to the ease of generating stochastic light fields. For any sensory system, the system’s response function determines the organism’s capability to process the available information and turn it into a behavioral response. Such a response function is shaped by the natural environment and its fluctuations (3–5) and affects the search strategy [be it mate search, food search, etc. (6, 7)] and the swimming behavior of microorganisms (8). Gradient sensing is particularly important in marine and freshwater ecosys- tems, where the distribution of resources is highly heterogeneous (9, 10) and the ability to move toward resource hot spots can provide a strong selective advantage to motile organisms over nonmotile ones (2, 5). Spatiotemporal patterns of light underwater contribute to the heterogeneity of the aquatic environment. Because light is a major carrier of energy and information in the water column (11), phototaxis is a widespread case of directed gradient-driven locomotion (12, 13), found in many species of phytoplankton and zooplankton. Phototaxis strongly affects the ecology of aquatic ecosystems, contributing to diel vertical migration of phytoplankton, one of the most dramatic migratory phenomena on Earth and the largest in terms of biomass (14). Diel vertical migration is crucial for the survival and proliferation of plankton (13, 15, 16), may affect the structuring of algal blooms (17), and allows plankton to escape from predation by filter-feeding organisms. Because phytoplankton are responsible for one-half of the global photosynthetic activity (18, 19) and are the basis of marine and freshwater food webs (20), their behavior and productivity have strong implications for ocean biogeochemistry, carbon cycling, and trophic dynamics (21, 22).

The quantitative understanding and the associated development of mathematical models for the directed movement of microorganisms have been largely limited to chemotaxis, while other forms of taxis have received considerably less attention despite their ecological importance. For chemotaxis, quantitative experiments have led to a comprehensive characterization of the motile response of bacteria to chemical gradients (23, 24), and this knowledge has been distilled into detailed mathematical models (25). Continuum approaches such as the Keller–Segel model (26, 27), and its generalizations (28), have been used extensively to describe the behavior of chemotactic bacterial populations in laboratory experiments. However, although a limited number of models for phototaxis exists (28–31), an assessment of the phototactic response function is lacking. Existing models rely on untested working hypotheses concerning the cell response to light, originating from the scarcity of experimental work linking controlled light conditions to measured organism responses (SI Discussion).

Here, we present quantitative experimental observations of the phototactic response of the flagellate alga Euglena gracilis to controlled light gradients. E. gracilis is a common freshwater microalgae possessing a variety of sensory systems to acquire information about their environment (1), including the availability of resources, the presence of predators, and the local light conditions (2). For any sensory system, the system’s response function determines the organism’s capability to process the available information and turn it into a behavioral response. Such a response function is shaped by the natural environment and its fluctuations (3–5) and affects the search strategy [be it mate search, food search, etc. (6, 7)] and the swimming behavior of microorganisms (8). Gradient sensing is particularly important in marine and freshwater ecosystems, where the distribution of resources is highly heterogeneous (9, 10) and the ability to move toward resource hot spots can provide a strong selective advantage to motile organisms over nonmotile ones (2, 5).

...
phytoplankton species that swims via a paraglacial flagellum and uses a paraglacial body and red stigma (a red eyespot) (32) to respond to light gradients. *E. gracilis* has been used extensively as a model organism in both the ecological (33, 34) and the ecophysiological literature (35, 36) and has been used as a candidate species for technological applications such as photobioreactors (37) and micropropellers (38, 39). We use the experimental results to identify a mathematical model for phototaxis. We find that a Keller–Segel-type model (26, 27) accurately describes cell accumulation patterns at all light intensities tested and that the light sensitivity of *E. gracilis* is described by a generalized receptor law (25, 40), a nonlinear function of light intensity that displays a maximum at the light intensity at which cells preferentially accumulate.

Results

We performed laboratory experiments with *E. gracilis* to track the response of algal populations to imposed light conditions. Experiments were conducted in linear channels (5 mm wide × 3 mm high × 2 m long) filled with cells (2,100 ± 200 cells mL⁻¹) suspended in nutrient medium (Fig. 1 and Materials and Methods). Light conditions were controlled by light-emitting diodes (LEDs), illuminating the channels from below and operated via Arduino Uno boards (Fig. 1 and Materials and Methods). We measured cell distributions in response to localized light sources of different intensity and wavelength λ in the blue (λ = 469 nm) and red (λ = 627 nm) regions of the visible spectrum. We measured the light intensity profile I(x) = I₀(x) [we set I(0) = 1; Fig. S1], units are retained in I₀ in the linear channels (Materials and Methods) and we programmed the LEDs to produce the following peak intensities within the channel, at x = 0 cm (above the LED): I₀ = 0.8, 2.3, 5.2, 7.8, 10.4, 20.8, 31.3 W m⁻² for λ = 469 nm and I₀ = 2.6, 4.7, 10.9, 16.7 W m⁻² for λ = 627 nm. The light profile I(x) was determined by the experimental setting geometry and was invariant for all values of I₀.

Stationary *E. gracilis* accumulation patterns in blue light are shown in Fig. 2 A–G. Fig. 2 shows that by increasing the peak light intensity I₀ from I₀ = 0.8 W m⁻² to I₀ = 5.2 W m⁻², cell density peaks increase in magnitude (shown are the density profiles normalized by the value at the boundary) and occur in correspondence to the peak in light intensity (x = 0 cm). Then, for larger values of I₀, cell density peaks are approximately constant in magnitude, but shift to the left and right of the source. Cell accumulation was maximum at the light intensity I ≈ I₀ = 5.5 W m⁻² (Fig. 2 A–G; λ = 496 nm; I₀ is calculated using the model proposed in the following paragraphs). Light intensities higher than I₀ elicited negative phototaxis (directed movement away from the light source), indicating a biphasic response to light (Fig. 2 E–G). Such biphasic responses are common in phototaxis, because they allow cells to increase their motility (44), by fitting the decay rate of the spectral log-amplitudes log [ρ(k) t] to the square of the wave number (Fig. 3 G and H and SI Materials and Methods). The estimate D = 0.13 ± 0.04 mm m⁻¹ is obtained (the SE represents the variability across the first three discrete Fourier transform modes).

The experimental results allowed us to derive a model of phototaxis in *E. gracilis*. We used a Keller–Segel framework, which consists of an advection-diffusion equation for the cell density ρ(x,t) (25) (neglecting cell division owing to the short duration of the experiments):

\[
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} \left(D \frac{\partial \rho}{\partial x} - \phi(x) \rho \right) = 0,
\]

where \(\phi(x) = \frac{\partial \rho}{\partial x}\) is the drift velocity or “phototactic velocity” of the population in the direction of the light gradient. The phototactic velocity was written as the derivative of a phototactic potential, \(\phi\), which is solely a function of the light intensity \(I(x)\) (25). Such reformulation of the Keller–Segel model allows to express the stationary density distribution as a function of \(I(x)\). The steady-state accumulation of cells that satisfies Eq. 1, computed over the spatial extent of the imaging window (−L ≤ x ≤ L; L = 6.25 cm), is as follows:

\[
\bar{\rho}(x) = \frac{\rho(x)}{\rho(-L)} = \exp \left(\frac{\phi(I(x))}{D} \right).
\]

where \(\bar{\rho}(x)\) is the normalized cell density appropriate for comparison with experimental observations. Note that, in general, the exponent should be \(\phi(0) = \phi(-L)\), but because \(\phi\) is defined only up to an additive constant we set \(\phi(0) = 0\). Thus, \(\phi\) is set to zero for \(I = 0\) (Fig. 4B).

The stationary cell density distributions under blue light (Fig. 2 A–G) together with the measured light intensity profiles (Fig. 4A) were used to derive the phototactic potential \(\phi(I)\) from the data. First, we tested the ability of the Keller–Segel model (Eq. 1) to capture the observed phototactic responses in different light regimes. Fig. 4B (Inset) shows that the mean cell density profiles \(\bar{\rho}(x)\) collapse on the same curve when plotted together as functions of the light intensity (via Eq. 2), thus supporting the applicability of Eq. 1 and the computation of \(\phi\) via Eq. 2, that is, \(\phi(I) = D \log \bar{\rho}(x)\). Second, we determined the functional form of the phototactic potential \(\phi(I)\). We compared 18 functional forms for \(\phi(I)\) using an information-theoretic criterion (46) (Materials and Methods). A comparative review of earlier models for phototaxis is provided in SI Discussion. The functional forms were chosen by combining monotonically increasing functions of the stimulus \(I\) often used to describe sensing, particularly in chemotaxis (25), with monotonically decreasing functions of \(I\),
accounting for the photophobic behavior shown experimentally at high light intensity.

By fitting each of the above models (Table S1 and Figs. S2 and S3) to the phototactic potential derived from the data (Fig. 4B), and by using the Akaike Information Criterion (AIC) (46) to formally quantify their relative performance in simulating the experimental parameters discounting the number of parameters, we conclude that our proposed generalization of the receptor law modified to account for the photophobic behavior shown at high light intensities reads as follows:

$$\phi(I) = a I_L - I, \quad \text{[3]}$$

where $a = (1.4 \pm 0.04) \times 10^{-8}$ m4 W$^{-1}$ s$^{-1}$, $I_L = 1.7 \pm 0.1$ W m$^{-2}$, and $I = 28.0 \pm 0.3$ W m$^{-2}$ (SEs are calculated via nonlinear least-squares fitting). The phototactic potential displays a maximum (ϕ is 1.8 mm2s$^{-1}$) at $I_m = 5.5$ W m$^{-2}$ (Fig. 4B), the light intensity value that separates the positive and negative phototaxis regimes, and is equal to zero at $I_c = 28.0$ W m$^{-2}$. The phototactic velocity $v_p = d\phi/dx$ corresponding to Eq. 3 in our experimental light conditions is shown in Fig. S4. Eq. 3 yields the best model for phototaxis in E. gracilis in reproducing the measured stationary cell density profiles (Fig. 4C and D).

The proposed phototaxis model, although derived from stationary distributions, correctly captures also the temporal dynamics of phototaxis (red dashed lines in Fig. 3A–F), that is, the formation of density peaks in the presence of light and their subsequent dissipation following light removal (note that Eq. 1 reduces to the diffusion equation in the absence of light stimuli). Small deviations from the model prediction during cell accumulation (Fig. 3A–C) are observed. They are possibly due to the repeated transfers of the channel from the illumination setup to the stereomicroscope for algal density measurements.

Discussion

To compare our experimental setup with natural environments, we note that integrating the ASTM G-173 reference terrestrial solar spectral irradiance (47) in a wavelength window of 10 nm centered at $\lambda = 469$ nm (10 nm is the typical width of emission for our LEDs; Materials and Methods) gives a typical irradiance of ~ 13 W m$^{-2}$ at sea level. Wavelengths in the blue region of the visible spectrum are among the most transmitted in natural aquatic habitats (11, 48) and penetrate the farthest in the water column, whereas red light is the most attenuated. Thus, the range of light intensities and wavelengths used in the experiments is typical of natural conditions, suggesting that our experimental and theoretical results may have implications for the behavior of phytoplankton in natural environments.

The response of cells to light of different intensities, here expressed in terms of the phototactic potential $\phi(I)$, was inferred from measured stationary cell density profiles. However, the model was shown to capture also the temporal dynamics of cell accumulation around a light source and the diffusive relaxation following light removal. Interestingly, the proposed choice of receptor law, subsumed by $\phi(I)$, includes both positive and negative phototaxis within the same mathematical framework. Although we cannot exclude that phototactic microorganisms may in general sense both the intensity and directionality of light, our model based on intensity alone outperforms other models including both intensity and directionality of light propagation (SI Discussion, Fig. S5, and Tables S1–S5), at least for our experimental setting.

Our experimental approach to phototaxis provides a template for the study of ecological processes in shifting and fluctuating resource availability. In fact, the convenient use of programmable LEDs allows one to create microbial microcosms in which light conditions can be accurately controlled to generate a boundless variety of spatiotemporal patterns of environmental stochasticity, affecting both the growth and the movement behavior of cells. Hence, the study system developed here is suggested to be a promising candidate for quantitative microcosm experiments on biological invasions along ecological corridors, range expansions, and source-sink dynamics under environmental noise (49–52).

All things considered, we suggest that the literature lacked an experimentally tested mathematical framework comprising a measure of the phototactic response function of phototactic populations. This work is thus suggested to provide the blueprint for...
the characterization of the collective response of phytoplankton to light availability and its migration strategies in aquatic ecosystems. Identification of the light intensity regime where positive and negative phototaxis occur pinpoints the regions of the water column where phototactic effects affect the vertical distribution of phytoplankton. Currently, models of phytoplankton growth in contrasting gradients of light and nutrients aimed at reproducing the vertical distribution of phytoplankton, either ignore phototaxis (53) or rely on untested assumptions for the phototactic advection velocity \(v_P = d\phi(I(x))/dx \) (54, 55). The identification of the functional form for \(\phi(I) \) provided here can be used directly to integrate realistic predictions for the phytoplankton vertical distribution, which is relevant for global biogeochemical cycles, diversity and coexistence of plankton species, and ecosystem functioning (56, 57).

The interspecific variability of the optimal light intensity \(I_o \) and nutrient requirements have been argued (58) to translate into a sectoring of the water column into separate niches, allowing the coexistence of competitive species.

The mathematical framework derived here may also serve to improve the design of algal bioreactors. Phototaxis of swimming algae, sometimes in combination with other directional behaviors such as gravitaxis (the directed swimming in response to gravity) and gyrotaxis (gravitaxis in the presence of ambient velocity gradients), is speculated to have implications for the design of algal photobioreactors. The phototaxis model proposed here (Eq. 1) may be used directly to refine existing models for photo-gyrotactic (31) and photo-gyro-gravitactic (59) bioconvection, which currently rely on educated guesses for the phototactic advection term. Our model may be applied to identify optimal designs for cell accumulation far from the reactor surface to avoid biofouling and to achieve enhanced harvesting, a strategy that has been investigated experimentally (37). For example, the fact that the phototactic potential \(\phi \) is much steeper for light intensities above \(I_o = 5.2 \text{ W m}^{-2} \) than below such value, and hence the phototactic velocity is larger for \(I > I_o \), suggests that the exploitation of negative phototaxis might be a more effective strategy than the use of positive phototaxis to achieve optimal harvesting.

Algae are also increasingly used in microbiochip and micropropellers research, for example as micropropellers for the transport of colloidal cargo (38, 39), where light can be used as the external driver of the motion. Although this research is yet to translate into practice, it represents an exciting avenue to harness microbial motility for controlled microscale applications, and phototaxis represents one of the most controllable processes because of the ease of accurately imposing and rapidly modulating external light gradients. The algorithms that are currently used to control such microbiochips are mostly empirical, and our model may indeed serve to render machine control more robust and accurate. Much attention is currently dedicated to understanding the swimming behavior in these artificial environments (60) and our characterization of collective phototactic dynamics might be exploited to optimize existing technological applications or design new ones.

In the broadest sense, our work provides a blueprint for obtaining robust, quantitative data on directed cell motility, and our method is straightforward to extend to diverse photosynthetic species of plankton, enabling a better understanding of how these important organisms move and live in natural or man-made heterogeneous environments.

Materials and Methods

Algal Culture. The species used in the experiments, *E. gracilis*, was purchased from Carolina Biological Supply and maintained in a nutrient medium (33, 34) composed of sterilized spring water and Protozoan Pellets (Carolina Biological Supply) at a density of 0.45 g L\(^{-1}\), filtered through a 0.2-μm filter. Algal cultures were initialized 2 wk before the start of the experiment and
kept at a constant temperature of 22 °C under constant LED light at λ = 469 nm. E. gracilis individuals have a typical linear size of 14 μm (34), and the duplication time is ~20 h (33); thus, reproduction can be neglected in our experiments.

Linear Landscapes. The linear landscapes (Fig. 1) used in the experiments were channels drilled on a Plexiglas sheet (61). A second Plexiglas sheet was used as a cover, and a gasket prevented water spillage. Before the introduction of the algal culture to the linear landscapes, the Plexiglas sheets were sterilized with a 70% (vol/vol) ethanol solution, and the gaskets were autoclaved.

Light Sources and Light Intensity Profile. A linear array of LEDs was developed to control the light intensity profile along the linear landscapes. LEDS were placed below the linear channels (Fig. 1). RGB (red, green, blue) LED strips (LED: SMD 5050; chip: WS2801 IC) were controlled via Arduino Uno boards. The LED strips consisted of individually addressable LEDs separated by a distance of 3.12 cm. The light intensity for the B (blue) and R (red) color channels (wavelengths of 463-475 and 619-635 nm, respectively) could be controlled. We measured the total radiant flux emitted by LEDs at the different intensities and wavelengths used with a calibrated photodiode. The relative light intensity profiles, with the LEDs set at the different intensities used, was measured by placing a white paper sheet in the linear channels and measuring the irradiance on the sheet with a digital camera operated in grayscale at fixed aperture, exposure, and distance from the LED. This relative measure of light intensity was converted to absolute values via the total radiant flux measured. In the experiments, periodic light intensity profiles were established with one LED switched on every 12.5 cm. The experimentally measured relative light intensity profile \[\phi(x) \] was found to be well described by the functional form \[\phi(x) = \frac{I_0}{(x^2 + \alpha^2)} \] (Fig. 51).

Density Measurements. Density profiles were measured at the center of the linear landscape across one entire period of the light intensity profile. Density estimates were obtained by placing the linear landscape under the objective of a stereomicroscope (Olympus SXZ16), taking pictures (with the camera Olympus DC72), and counting individuals through image analysis as in ref. 61. Stationary density profiles were measured after 210 min from the introduction of cells in the landscape. In the phototactic accumulation measurements, the landscapes were moved from the support holding the LEDs used for experimentation to the stage of the stereomicroscope just before performing the density measurement. Imaging of the 12-cm imaging window took less than 30 s. Thereby, we assume that no significant relaxation or redistribution of algae occurred during the measurement time. To measure the relaxation of density peaks, the linear landscapes were placed on the stage of the stereomicroscope and the white LED light for microscopy was switched on solely during the measurement time. Landscapes were covered with black cardboard and kept in a dark room to avoid external light during all of the experiments, except during imaging.

Phototactic Potential. To investigate the suitable functional form of the phototactic potential, we combined a set of models that have been used to describe sensing in chemotaxis (25) with a set of monotonically decreasing functions aimed at reproducing the photophobic behavior at high light intensity. The resulting functional forms were formally compared via the AIC to probe their performance in reproducing our laboratory data. The first set, which consists of monotonically increasing functions of light intensity, is as follows: \(\phi(I) = aI, \phi(I) = a/I(1 + bI), \) and \(\phi(I) = a\log(1 + bI) \). These functional forms have been used to describe chemotactic responses (25). The second set consists of monotonically decreasing functions of light intensity \(I \), specifically: \(\phi(I) = -\log(1 + cI), \phi(I) = -c/I, \) and \(\phi(I) = -cI \). The functional forms in the second set were chosen to allow \(\lim_{I \to \infty} \phi = -\infty \) (some of the combinations do not satisfy this limiting behavior; e.g., Fig. 53). In fact, experimental observations show that \(\pi(x) = 0 \) if the light intensity in x grows too large. In such case, \(\pi(x) = D \log(\pi(x)) = -\infty \). Models from the first set were combined with models from the second set both in additive and multiplicative fashions (SI Materials and Methods). We fitted all models to the data (Figs. 52 and 53) and computed the corresponding AIC values (Table 51). The best model according to the AIC is \(\phi_{SC} = a(1 - 1/I)/(1 + bI) \).

ACKNOWLEDGMENTS. We thank Enrico Bertuzzo, Francesco Carrara, and Lorenzo Mari for discussions and comments, and Antonino Castiglia, Nicola Grandjean, and Marco Malinverni for support in the light intensity measurement. We gratefully acknowledge the support provided by Swiss Federal Institute of Aquatic Science and Technology (Eawag) discretionary funds; the European Research Council advanced grant program through the project “River Networks as Ecological Corridors for Biodiversity, Populations and Waterborne Disease” (RINEC-227612), and Swiss National Science Foundation Projects 200021, 124930/1, 200021, 157174, and 31003A_135622. R.S. acknowledges support through a Gordon and Betty Moore Marine Microbial Initiative Investigator Award (GBMF3783).

Supporting Information

Giometto et al. 10.1073/pnas.1422922112

SI Materials and Methods

Density Estimates and Video Recording. Border effects were neglected because the density measurements were always performed at the center of the landscape, which had a total length (2 m) that was much larger than the length of one period of the light intensity profile (12.5 cm). To reconstruct the trajectories, videos were recorded with a stereomicroscope (Materials and Methods) and particle tracking was performed automatically with the MOSAIC (1) plug-in for ImageJ under homogeneous light conditions and manually with the MTrackJ plug-in for ImageJ in the presence of nonuniform light (automatic tracking was not possible in the nonuniform light setup because of the low quality of pictures, due to the use of only one LED light for the microscopy).

Vertical Distribution of Cells. Cells were observed to accumulate on one layer at the top of the channel, both in the presence and in the absence of light. This vertical distribution of cells is not due to phototaxis, but is caused by a phenomenon known as negative gravitaxis, that is, the movement of Euglena gracilis in the direction opposed to gravity (2). In fact, the distribution of algae is skewed toward the top of the channel regardless of the positioning of the LED above or below the linear landscapes, as shown in Fig. S6. Such skewed distribution of algae in the vertical direction bears no implications for the validity of our results once the density distribution data are integrated in the vertical direction.

Population Estimate of the Diffusion Coefficient. The population estimate of the diffusion coefficient \(D\) (Table 1) was based on the relaxation of density peaks (Fig. 3 D–H). Density profiles at different times were Fourier-transformed in space and the decay of their log amplitudes \(\log(\|\hat{\rho}(k,t)\|/\|\hat{\rho}(k,0)\|)\) in time was fitted to the linear model \(-Dk^2t\) for \(k=1,2,3\) (Fig. 3G) in all experimental replicates. The mean exponential decay rate as a function of \(k\) across replicates was then fitted to the parabola \(Dk^2\) (Fig. 3H) to estimate \(D\).

Phototactic Potential. To investigate the functional form of the phototactic potential, we combined a set of models that have been used to describe sensing in chemotaxis (3) with a set of monotonically decreasing functions aimed at reproducing the photophobic behavior at high light intensity. The resulting functional forms were compared via the Akaike Information Criterion (AIC) to compare their performance in predicting the data. The first set of models, which consists of monotonically increasing functions of light intensity, is as follows:

\[
\begin{align*}
\phi_1(I) &= aI, \\
\phi_2(I) &= a - \frac{I}{1 + bI}, \\
\phi_3(I) &= a \log(1 + bI).
\end{align*}
\]

These models have been used extensively to describe chemotactic responses (3). The second set of models consists of monotonically decreasing functions of light intensity \(I\):

\[
\begin{align*}
\phi_4(I) &= -\log(1 + cI), \\
\phi_5(I) &= -c \sqrt{I}, \\
\phi_6(I) &= -cI.
\end{align*}
\]

The functional forms in the second set were chosen to allow \(\lim_{I \to \infty} \phi = -\infty\) (some of the combinations do not satisfy this limiting behavior, resulting in poor fits; e.g., Fig. S3). In fact, experimental observation show that \(\phi(x) = 0\) if the light intensity in \(x\) is too high. In such situation, \(\phi(x) = D \log(p(x)) = -\infty\). Models from the first set were combined with models from the second set both in a multiplicative (e.g., \(\phi_{14} = \phi_1(1 + \phi_4) = a[I - \log(1 + cI)]\)) and additive [e.g., \(\phi_{14} = \phi_1 + \phi_4 = aI - \log(1 + cI)\)] fashion. We fitted all models to the data (Figs. S2 and S3) and computed the corresponding AIC values, which are reported in Table S1. The best model according to the AIC is \(\phi_{2C} = aI/(1 - cI)/(1 + bI)\); all other models have a \(\Delta\)AIC value (compared with the best model) larger than 7 and are thus unlikely (4). The AIC is unable to distinguish between the additive and multiplicative form of the model combination \(\phi_2\) and \(\phi_C\), because the \(\Delta\)AIC difference between the additive combination, \(\phi_{2C} = aI/(1 + bI)\), and the multiplicative one, \(\phi_{2C} = aI(1 - cI)/(1 + bI)\), is only \(\Delta\)AIC = -0.0005. We thus assumed the combination yielding the smallest \(\Delta\)AIC index, the multiplicative one, as the best model.

Swimming Trajectories. To characterize the swimming behavior at the single-cell level, we recorded trajectories of individual E. gracilis cells (Fig. S7), both in a uniform light field and within a nonuniform one. The statistics of cell motion in uniform light (Fig. S7) are in good agreement with the Ornstein–Uhlenbeck (OU) process (5, 6):

\[
\begin{align*}
\dot{x} &= v \\
\dot{v} &= -\gamma v + \sigma n(t).
\end{align*}
\]

where \(x\) is the (one-dimensional) position of the cell, \(v\) is its instantaneous velocity, and \(n(t)\) is a Gaussian white noise. The diffusive behavior observed at the population level finds confirmation by the analyses at the level of individual cells at much smaller spatial and temporal scales (Fig. S7C). In fact, a quantitative agreement between the diffusion coefficients at the two scales is observed. However, no net displacement is observable at the single-cell scale over the duration (60 s) of tracking trajectories recorded in nonuniform light, because the random component of the motion dominates over phototactic drift. A mathematical framework for the motion of individual cells in the presence of nonuniform light fields is proposed in the following section and is used therein to explain the impossibility to observe a net bias toward the source in the experimental trajectories at such timescales. The analysis of individual trajectories that characterizes the typical swimming behavior of cells provides information on the instantaneous speed \(v\) and the typical autocorrelation time \(\tau\) of swimming trajectories. This might be of interest in view of phototactic applications of microorganisms as micropropellers.

Uniform light. We measured 330 trajectories of cells through dark-field microscopy, placing the recording window at the center of the microscope stage to minimize light gradients and thus bias in the direction of motion. We analyzed the recorded trajectories by computing the mean square displacement, mean square velocity, velocity autocorrelation, and velocity distribution along the direction of the channel (Fig. S7). We analyzed the \(x\) coordinates of the recorded trajectories, that is, the coordinate of each individual in the direction of the linear landscape, which was also the direction of the light gradient under the nonuniform light conditions. The statistics (Fig. S7) of cells’ motion in uniform light are in good agreement with the OU process (5, 6). Specifically, the mean square displacement \(\langle \Delta x^2(t) \rangle\), mean square velocity \(\langle v^2(t) \rangle\),
and velocity autocorrelation \(\langle v(t)v(0) \rangle \) were fitted to their analytical expressions (S5):

\[
\langle \Delta x^2(t) \rangle_{\text{OU}} = \frac{\sigma^2}{\gamma} \left(\frac{2}{\gamma} (1 - e^{-\gamma t}) + \frac{1}{2\gamma} (1 - e^{-2\gamma t}) \right) + \frac{v_0^2}{\gamma^2} (1 - e^{-\gamma t}),
\]

\[\text{[S2]}\]

\[
\langle v^2(t) \rangle_{\text{OU}} = v_0^2 e^{-2\gamma t} + \frac{\sigma^2}{2\gamma} (1 - e^{-2\gamma t}),
\]

\[\text{[S3]}\]

\[
\langle v(t)v(0) \rangle_{\text{OU}} = v_0^2 e^{-\gamma t}.
\]

\[\text{[S4]}\]

The quantity \(\gamma^{-1} \) measures the typical timescale of the velocity autocorrelation, whereas \(\sigma \) describes the degree of stochasticity of the motion. The fit was performed simultaneously for the three curves (red lines in Fig. S7), that is, the best fit parameters for \(\gamma \) and \(\sigma \) were those that minimized the \(\chi^2 \):

\[
\chi^2 = \frac{1}{2} \left[\sum_{i=1}^{T} \left(\langle \Delta x^2(t) \rangle_{\text{data}} - \langle \Delta x^2(t) \rangle_{\text{OU}} \right)^2 / \sigma^2_{\langle \Delta x^2(t) \rangle} \right] \]

\[
+ \sum_{i=1}^{T} \left(\langle v(t) \rangle_{\text{data}} - \langle v(t) \rangle_{\text{OU}} \right)^2 / \sigma^2_{\langle v(t) \rangle} \]

\[
+ \sum_{i=1}^{T} \left(\langle v(t)v(0) \rangle_{\text{data}} - \langle v(t)v(0) \rangle_{\text{OU}} \right)^2 / \sigma^2_{\langle v(t)v(0) \rangle} \right],
\]

where \(\sigma^2 \) indicates the SE of the mean in the data. The parameters’ errors are given by the square root of the diagonal elements of the Hessian matrix, which is evaluated at the minimum. This fitting procedure provided the estimates \(\gamma = 0.077 \pm 0.014 \text{ s}^{-1} \) and \(\sigma = 0.032 \pm 0.004 \text{ mm/s}^{3/2} \) (mean \(\pm \) SE). The cyan lines in Fig. S7 were obtained by fitting the velocity autocorrelation to its analytical expression Eq. S4 and subsequently fitting \(\sigma \) separately to the mean square displacement via Eq. S2 and to the mean square velocity via Eq. S3. This fitting procedure provided the estimates \(\gamma = 0.054 \pm 0.014 \text{ s}^{-1} \) and \(\sigma = 0.025 \pm 0.003 \text{ mm/s}^{3/2} \) (mean \(\pm \) SE). The diffusive behavior observed at the population level finds additional confirmation at the individual level (at times \(t > \gamma^{-1} = \tau \), Fig. S7C), with quantitative agreement between the diffusion coefficients at the two scales [for the trajectories data, \(D = \sigma^2 / (2\gamma^2) = 0.09 \pm 0.04 \text{ mm}^2/\text{s} \), where we have used the mean values of \(\gamma \) and \(\sigma \) obtained with the two fitting procedures]. The mean (instantaneous) swimming speed of \(E. gracilis \) cells was \(\tau = 0.10 \pm 0.05 \text{ mm s}^{-1} \), mean \(\pm \) SE.

Nonuniform light. We measured 130 trajectories of individual organisms that were recorded in the presence of an imposed nonuniform light field (Fig. S8), obtained by placing a LED with \(L_0 = 5.2 \text{ W m}^{-2} \) at the right border of the imaging window, and found no net displacement toward the light source (Fig. S8B). The mean (instantaneous) swimming speed of \(E. gracilis \) cells was the same in nonuniform (\(\tau = 0.10 \pm 0.04 \text{ mm s}^{-1} \), mean \(\pm \) SE) and uniform light. The mean phototactic velocity \(v_\tau = \langle d\phi/dx \rangle \) in the imaging window (the mean is computed over space) (Eq. 2) is \(v_\tau = 0.007 \text{ mm s}^{-1} \), therefore, the directionality of swimming \(v_\tau /\tau = 0.07 \) is very small.

Despite the difficulty of discerning phototaxis at the single-cell level, the good agreement of trajectory statistics with the OU model in uniform light and the observation of accumulation dynamics around light sources at the population level suggest the following Langevin model for the phototaxis of individual cells,

\[
\begin{align*}
\dot{x} &= v \\
\dot{v} &= -\gamma v + \sigma \eta(t) + \gamma \frac{d\phi}{dx} \frac{I(x)}{e},
\end{align*}
\]

\[\text{[S5]}\]

where \(x \) is the (one-dimensional) position of the cell, \(v \) is its instantaneous velocity, \(\eta(t) \) is a Gaussian white noise, and \(\phi[I(x)] \) is the phototactic potential. In the presence of nonuniform light, the term \(d\phi[I(x)]/dx \) in Eq. S5 drives the accumulation of individuals around the light source in the long term. This single-cell model is consistent with the Keller–Segel model at the population scale (Eq. 1) and reduces to the OU model in the absence of external gradients. However, given that we could not discern the biased movement toward the light source at the individual cell level, no direct evidence of the applicability of Eq. S5 is available and further experimentation is required.

To interpret the failure to detect a bias toward the light source, we performed 1,000 integrations of Eq. S5, with initial positions drawn uniformly at random in the range \([-10.5 \text{ mm}, -1 \text{ mm}] \) (i.e., the visible region in the data) and with initial velocities drawn according to the stationary velocity distribution of the OU process. Fig. S8B (Inset) shows a plot of the computed mean displacement \(\langle \Delta x(t) \rangle \) and SD in the simulations. Fig. S8B elucidates why no discernible net displacement toward the light source is appreciable in the data, that is, the random motion of \(E. gracilis \) dominates over the drift toward the source at these spatial and temporal scales. Accordingly, phototactic accumulation of density peaks takes place in a time frame much larger than the typical persistence time \(\tau = 1.0 \right 15 \text{ s} \). Therefore, the model Eq. S5 provides interpretation for the impossibility to observe a net bias toward the source in the experimental trajectories.

The Expansion of the Fokker–Planck Equation. The expansion of the Fokker–Planck equation for the Langevin Eq. S5 in \(\gamma^{-1} \) is acceptable because the typical persistence time \(\tau = \gamma^{-1} = 15 \text{ s} \) of the trajectories is much smaller than the typical timescale for the macroscopic dynamics. An intuitive derivation of the expansion can be obtained by neglecting the inertial term \(\dot{v} \) in Eq. S5 [a technique known as adiabatic elimination of fast variables (6)], which results in the Langevin equation \(\dot{x} = (\sigma / \gamma) \eta(t) + (d\phi/dx) [I(x)] \). The corresponding Fokker–Planck equation describing the time evolution of the probability density function \(\rho(x,t) \) is then \(\partial \rho(x,t)/\partial t = (\sigma^2 / 2\gamma^2) \partial^2 \rho(x,t)/\partial x^2 + (d\phi/dx) [I(x)] \partial \rho(x,t)/\partial x \), which is equivalent to Eq. 1 for \(D = \sigma^2 / (2\gamma^2) \).

Numerical Integration. To compute the time evolution of algal accumulation according to the Keller–Segel model (Fig. 3), we integrated Eq. 1 numerically with the method of lines (7) in the domain \(x \in [-6.25, 6.25] \text{ cm} \), whose total length of 12.5 cm corresponds to one period of the periodic light intensity profile established in the experiments. The initial condition was uniform and equal to the mean cell density. Reflecting boundary conditions were set at the border of the domain. Eq. S5 was integrated numerically with the Euler–Maruyama method of order 1/2 to compute the model predicted mean displacement and SD for the experimental settings (Inset in Fig. S8B). The light intensity profile used in the numerical integrations of Eq. 1 and Eq. S5 was the best fit of the equation \(I(x) = \alpha / (\gamma^2 + x^2)^2 \), which approximates very well the measured profile (Fig. S1).

SI Discussion

Sensing of Light Directionality Cannot Explain the Data. One might wonder whether a model based on the sensing of the directionality of light propagation, as opposed to its intensity, could explain the experimental results. In our experimental setup, such model would read as follows:

\[
\frac{d\rho(x,t)}{dt} = \frac{\partial}{\partial x} \left[D \frac{d\rho(x,t)}{dx} - k \text{ sign}(x) \rho(x,t) \right],
\]

\[\text{[S6]}\]

where the advection velocity is \(k \) and the term \(\text{sign}(x) \) accounts for the directed movement of cells in the direction of light
propagation (the light source is placed at \(x = 0\)). This model predicts a stationary algal density profile proportional to \(\exp(-k/D|x|)\), a cusp centered at the origin, which is in stark contrast with the shape of the experimental algal density distributions and with its dependence on light intensity (Fig. 2 A–G). Fig. 2 A–G shows that, despite the light source being always placed at \(x = 0\) and the direction of light propagation being thus invariant across the panels, the algal density profiles in the presence of different light intensities are dramatically different, an effect due solely to the variation in light intensity. Thus, at least in our experimental setup, including light intensity in the phototactic potential is necessary to reproduce the observed accumulation patterns and dynamics.

Here, we show that also phototactic models based on the sensing of the directionality of light propagation with an advection velocity dependent on light intensity provides a poor fit to the measured stationary distributions. Specifically, we study the class of models defined by the advection-diffusion equation:

\[
\frac{\partial \rho(x,t)}{\partial t} = \frac{\partial}{\partial x} \left[D \frac{\partial \rho(x,t)}{\partial x} - k \eta[I(x)] \text{sign}(x) \rho(x,t) \right],
\]

which is a generalization of Eq. S6. The phototactic velocity dependence on light intensity is given by \(k \eta[I(x)]\). For any \(\eta[I(x)]\), the stationary algal density distribution for such model, in the presence of the light intensity profile \(I(x)\) (with \(x \in [-L, L]\)), is equal to the following:

\[
\log \frac{\rho(x)}{\rho(-L)} = \frac{k}{D} \int_{-L}^{L} dy \eta[I(y)] \text{sign}(y).
\]

Note that Eq. S8 does not predict the data collapse observed in our data (Fig. 4B, Inset). The observation of such collapse is already an indication that Eqs. S7 and S8 may not provide a good fit to the experimental data.

To study the performance of Eq. S8 in fitting the data, we fit simultaneously the stationary density distribution data \(\log[\rho(x)/\rho(-L)]\) against the function \((k/D) \int_{-L}^{L} dy \eta[I(y)] \text{sign}(y)\), for all values of \(I_0\) simultaneously. To do so, we minimized the \(\chi^2\):

\[
\chi^2 = \sum_{j=1}^{n} \left[\frac{k}{D} \int_{-L}^{L} dy \eta[I_0,j(y)] \text{sign}(y) - \log \frac{\rho_I(x)}{\rho_I(-L)} \right]^2,
\]

where \(\rho_I\) identifies the \(j\)th value of the experimental peak light intensities and \(\rho_I\) is the stationary density distribution measured with peak light intensity \(I_0\). The best fit of Eq. S8 is compared with the best fit of the generalized Keller–Segel model derived in the main text (Eq. 1 of the main text with \(\phi\) as in Eq. 3 of the main text) via the AIC. To perform a fair comparison between models, the best fit of Eq. S8 for various choices of \(\eta[I]\) is compared here to the best fit of the generalized Keller–Segel model obtained by minimizing the \(\chi^2\):

\[
\chi^2 = \sum_{j=1}^{n} \left[\frac{1}{D} \int_{-L}^{L} dx \left| a_{I_0,j} \frac{l_c - I_0,j(x)}{I_c + I_0,j(x)} - \log \frac{\rho_I(x)}{\rho_I(-L)} \right|^2 \right].
\]

instead of fitting the phototactic potential \(\phi = al[I,I_0 + 1]\) from the data collapse of \(\log[\rho_I/\rho(-L)]\) vs. \(I\) (Fig. 4B), as was done in the main text.

The functional form for the advection velocity \(\eta[I]\) in Eqs. S7 and S8 needs to account for positive phototaxis for \(I > 0\). A sketch of such qualitative behavior for the advection velocity is shown in figure 1 of ref. 8. However, no functional form for the dependence of the advection velocity on \(I\) was provided therein. Here, we compare several different choices for \(\eta[I]\) chosen to reproduce such behavior. The list of functional forms for \(\eta[I]\) investigated here is reported in Table S2. The best-fit parameters of Eq. S8 with \(\eta[I]\) as in Table S2 and the corresponding AIC values are reported in Tables S3–S5. Fig. S5 shows the corresponding best fits for the stationary algal distributions at the different experimental peak light intensities \(I_0\). All of the best fits of Eq. S8 with the different choices of \(\eta[I]\) listed in Table S2 have an AIC value much larger than the best fit of the generalized Keller–Segel model with the generalized receptor-law illustrated in the main text. Such result is a strong indication that the generalized Keller–Segel model (Eqs. 1 and 3 of the main text) provides the best description of phototactic behavior in the phytoplankton E. gracilis.

Comparison with Previous Models for Phototaxis. Two main phenomenological approaches have been adopted in the literature to model phototaxis of motile algae (8–10), both acknowledging the lack of experimental verification. The first is a photokinetic approach (8, 9, 11), where the average swimming velocity of cells is assumed to be a function of the light intensity \(I\). Vincent and Hill (8) assumed that the average cell velocity in a vertical light gradient is given by \(v_p[I] = v(I - I_0)\), where \(v\) is the average cell swimming speed and \(I_0\) is a suitable taxis response function (see figure 1 in ref. 8). In the previous section, we showed that this class of models provides an unsatisfactory fit to our data.

Analogously, Williams and Bees (9) proposed a photokinetic model in which the average cell velocity is a linear function of \(I\), i.e., \(v_p[I] = v[I_0, I_0 - I]\), \(v_0 = v[I_0, I_0 - I]\), \(v_0 = v[I_0, I_0 - I]\), \(v_0 = v[I_0, I_0 - I]\), where \(v\) and \(I_0\) are the cell swimming speed and the cell light intensity, respectively, when the data for \(I_0 = 0\) are provided by gyrotaxis and gravitaxis. Thus, cells are assumed to exhibit no net average displacement in the absence of gravity.

Burkart and Häder (11) performed a light-trap experiment with the alga Phormidium uncinitum and used experimental observations to derive an advection model with average cell velocity \(v_p[I] = a \log[I]/[2] (I)\) for \(I \geq 0\) and with \(a > 0\), neglecting cells diffusion. Such a model cannot reproduce the negative phototaxis behavior observed in E. gracilis, because \(v_p[I] = a \log[I]/[2] (I)\) is a monotonically increasing function of \(I\). Thus, cells would accumulate at the highest available light intensity value, contrary to our experimental results (Figs. 2 E–G and 4D, main text).

A different modeling approach consists of assuming an advection flow proportional to the light intensity gradient, \(v_p[I] = \gamma \partial[I]/\partial x\) (for \(I > 0\)), such as in Torney and Neufeld (12), where cell aggregation in turbulent flows was investigated theoretically. The proportionality of the advection flow to \(\partial[I]/\partial x\) ensures the existence of a net flow toward regions of higher light intensity. However, because \(v_p[I]\) is not a function also of the light intensity \(I\), possible saturating effects or photophobic behavior at high light intensities are neglected. The response function chosen by Torney and Neufeld (12) corresponds to the choice \(\phi = d[I]/\partial x\), which gives a better fit for the data shown in Fig. 4B, even if only the data points up to \(I_0 = 5.5\) W m\(^{-2}\) (maximum of the experimental \(\phi[I]\)) are used. Specifically, the functional form \(\phi = \phi_1 + \phi_2\) performs best compared with \(\phi_1 = (\Delta\text{AIC}=145 and 26, respectively), when the data for \(\phi\) (Fig. 4B, main text) are truncated at \(I_0 = 5.5\) W m\(^{-2}\).
Other mechanistic approaches have been explored to model phototaxis in combination with gyrotaxis. For example, Williams and Bees (9) considered other two models: one in which cells exhibited a center-of-mass offset dependent on light intensity; and another in which a reactive phototactic torque was introduced. However, because several additional processes are included, comparison of such models with data on photo-bioconvection patterns are difficult and mostly qualitative (10). Williams and Bees (10) provided the first replicated experimental investigation of photo-bioconvection patterns. They found qualitative agreement between the experimental data and the model predictions (9) for the dominant initial wavelength of bioconvective patterns obtained via linear stability analysis (10). Limitations to the quantitative comparison of the models and the experiments are discussed therein (10).

In our experiments, light came from below and cells were observed to distribute mostly on one layer at the top of the channels. Therefore, shading was neglected (unlike in refs. 8 and 9) and light gradients are present by design owing to the experimental setup. The assumption that the phototactic velocity \(v_p \) is a function of the light intensity \(I \) (and not of \(I \) and \(dI/dx \)), such as in refs. 8, 9, and 11, is unfeasible here, because it would induce a net phototactic movement in uniform light settings, without the existence of a preferential direction in the horizontal plane. The fact that the advection velocity is a function of both \(I \) and \(dI/dx \) is a common feature of Keller–Segel models, compare, e.g., equation 1 in ref. 3, and ensures that no net movement is induced in homogeneous distributions of the stimulus (be it a chemical for chemotaxis or light for phototaxis). Our framework differs from previous attempts to model phototaxis for the fact that the phototactic velocity here is a function of both the light intensity \(I \) and its spatial gradient \(dI/dx \), i.e., \(v_p = d\phi/dx = d\phi/dI/dx = \phi \) (a function of \(I \)). A model capable of describing both the positive and negative phototaxis regimes (a feature present in refs. 8 and 9 without direct experimental validation, and absent in refs. 11 and 12) is deemed desirable because negative phototaxis has important ecological consequences as it allows cells to avoid harmful radiation. Moreover, mechanisms describing both positive and negative phototaxis contribute to vertical positioning of sensible organisms in the water column (2), a widespread behavior in phytoplankton (13), and were suggested as key components of technological applications, such as harvesting in photobioreactors (www.google.com/patents/US20100237009) and toward the use of microorganisms as micropropellers (14).

Compared with previous research efforts, our investigation allowed a quantitative experimental determination of the phototactic response function (embedded in the potential \(\phi \) and, by derivation, in the advection velocity \(v_p \)) directly from cell density patterns in a broad range of light intensities, thus allowing the characterization of both negative and positive phototaxis regimes within a unified mathematical framework. The simple experimental settings devised allowed a direct quantitative comparison of the model with the experiments and invites further experimental investigation in more complex scenarios.

Fig. S1. (A) A-dimensional light intensity profile $i(x)$ [the light intensity profile is defined here as $i(x) = L_i(x)$] around a single LED, measured with a digital camera (black line). (B) Derivative of $i(x)$ computed from the digital camera measurement (black dots). The red lines are the best fit of the equation $i(x) = c_0/(x^2 + c_1)^2$ and its derivative, which was used for the integration of Eq. 1 (Fig. 3), for the calculation of the phototactic velocity (Fig. S4) and for the integration of the Langevin Eq. S5 (Inset of Fig. S8).

Fig. S2. Best fit of the multiplicative combinations of models for the phototactic potential, e.g., $\phi_{1A} = \phi_1 (1 + \phi_A)$. Rows and columns are labeled to identify the models combination.
Fig. S3. Best fit of the additive combinations of models for the phototactic potential, e.g., $\phi_{1A} = \phi_1 + \phi_A$. Rows and columns are labeled to identify the models combination.

Fig. S4. Phototactic velocity $v_P = d\phi/|I(x)|/dx$ in our experimental settings for different values of the peak light intensity I_0, color-coded as in Fig. 4A. The light source is placed at $x = 0$. The phototactic velocity v_P was calculated via Eq. 3 and the best fit for the light intensity profile $I(x)$ (Fig. S1).
Fig. S5. Stationary density profiles at the various experimental peak light intensities I_0 (colors as in Fig. 2, main text) according to the best fits of Eq. 58 with the different choices for $\eta(I)$ listed in Table S2 (the best-fit parameters and AIC values are reported in Tables S3–S5). Insets show the corresponding best fits for $\eta(I)$.

Fig. S6. The vertical distribution of algae is skewed toward the top of the channel. Images show the concentration of *E. gracilis* cells (white dots) near the top of the channel (top row), at channel mid-depth (middle row), and near the bottom of the channel (bottom row). Images are centered at $x = 0$ cm, that is, where the LED was placed. The left column shows the case in which the LED was placed above the landscape, and the right column shows the case in which the LED was placed below the landscape. In these additional experiments, the LED was set to produce a peak intensity $I_0 = 5.2 \text{ W} \cdot \text{m}^{-2}$. These observations confirm that *E. gracilis* accumulates near the top of the channel for any vertical position of the LED (above or below the channel).
Fig. S7. Single *E. gracilis* swimming trajectories in uniform light and fit to the OU process. The recorded swimming trajectories of algae (A) along the direction of the linear landscape resemble the OU process (B) both qualitatively (A and B) and quantitatively (C–F). (C–F) Statistics of the measured trajectories (black dots; mean ± SE) and fit to the OU process (red and cyan lines). The simultaneous fit (red lines) of the mean square displacement (C), mean square velocity (D), and velocity autocorrelation (E) shows that the OU represents a good description of the movement behavior of individual algae. The cyan lines were obtained by fitting the parameter γ in the velocity autocorrelation data (E) and subsequently fitting σ in the mean square displacement (C) and mean squared velocity (D) data separately (Supporting Information). (F) The simultaneous fit also provides a very good prediction for the stationary velocity distribution.

Fig. S8. Algal swimming trajectories in a nonuniform light. The mean square displacement of trajectories is consistent with a persistent random walk (A). (B) Mean displacement (± SE): at these spatial and temporal scales, there is no discernible net displacement toward the light source ($\Delta x > 0$). The Inset in B shows the mean displacement and SD of 1,000 trajectories, which were simulated according to Eq. S5. The random component of the motion is much stronger than the force term in Eq. S5 and thus hides the mean net displacement of the individuals toward the light.

<table>
<thead>
<tr>
<th>Multiplicative</th>
<th>Additive</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_A</td>
<td>ϕ_B</td>
</tr>
<tr>
<td>ϕ_1</td>
<td>58</td>
</tr>
<tr>
<td>ϕ_2</td>
<td>−172</td>
</tr>
<tr>
<td>ϕ_3</td>
<td>−163</td>
</tr>
</tbody>
</table>
Table S2. Candidate functional forms for $\eta(I)$

$\eta_A(I)$ = $\frac{I - \beta I}{1 + \delta I}$	$\eta_B(I)$ = $\frac{I - \beta I}{1 + \delta I}$
$\eta_C(I)$ = $\frac{\log(1 + \gamma I)}{1 + \delta I}$	$\eta_D(I)$ = $\frac{\log(1 + \gamma I)}{1 + \delta I}$
$\eta_E(I)$ = $\frac{I - \epsilon I}{1 + \delta I}$	$\eta_F(I)$ = $\frac{I - \epsilon I}{1 + \delta I}$
$\eta_G(I)$ = $\frac{\log(1 + \eta I)}{1 + \delta I}$	$\eta_H(I)$ = $\frac{\log(1 + \eta I)}{1 + \delta I}$

Functional forms for $\eta(I)$ aimed at reproducing the positive phototactic behavior observed at low light intensities and the negative phototactic behavior observed at high light intensities.

Table S3. Best-fit parameters for the simultaneous fit of Eq. S7 to all measured stationary density profiles at different values of I_0, with different choices for $\eta(I)$: Part 1

<table>
<thead>
<tr>
<th>Model $\eta_A(I)$</th>
<th>Model $\eta_B(I)$</th>
<th>Model $\eta_C(I)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Estimate (± SE)</td>
<td>Parameter</td>
</tr>
<tr>
<td>k/D, mW</td>
<td>$-250 ± 7$</td>
<td>k/D, mW</td>
</tr>
<tr>
<td>α, m²/W</td>
<td>$1.63 ± 0.10$</td>
<td>β, m²/W</td>
</tr>
<tr>
<td>β, m²/W</td>
<td>$1.144 ± 0.002$</td>
<td>γ, m²/W</td>
</tr>
<tr>
<td>AIC = 683</td>
<td>AIC = 966</td>
<td>AIC = -573</td>
</tr>
</tbody>
</table>

SEs are computed as the diagonal elements of the inverse Hessian matrix evaluated at the minimum. The AIC values for all choices of $\eta(I)$ are much larger than the AIC value for the best fit of the Keller-Segel model with generalized receptor law (AIC = $-1,398.5$) performed by minimizing the χ^2 as in Eq. S10, strongly suggesting that Eq. S6 is inadequate to describe the experimental data.

Table S4. Best-fit parameters for the simultaneous fit of Eq. S7 to all measured stationary density profiles at different values of I_0, with different choices for $\eta(I)$: Part 2

<table>
<thead>
<tr>
<th>Model $\eta_A(I)$</th>
<th>Model $\eta_B(I)$</th>
<th>Model $\eta_C(I)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Estimate (± SE)</td>
<td>Parameter</td>
</tr>
<tr>
<td>k, mW</td>
<td>$-218 ± 5$</td>
<td>k, mW</td>
</tr>
<tr>
<td>α, m²/W</td>
<td>$0.74 ± 0.04$</td>
<td>δ, m²/W</td>
</tr>
<tr>
<td>δ, m²/W</td>
<td>$0.299 ± 0.005$</td>
<td>δ, m²/W</td>
</tr>
<tr>
<td>AIC = -772</td>
<td>AIC = 698</td>
<td>AIC = -726</td>
</tr>
</tbody>
</table>

SEs are computed as the diagonal elements of the inverse Hessian matrix evaluated at the minimum. The AIC values for all choices of $\eta(I)$ are much larger than the AIC value for the best fit of the Keller-Segel model with generalized receptor law (AIC = $-1,398.5$) performed by minimizing the χ^2 as in Eq. S10, strongly suggesting that Eq. S6 is inadequate to describe the experimental data.

Table S5. Best-fit parameters for the simultaneous fit of Eq. S7 to all measured stationary density profiles at different values of I_0, with different choices for $\eta(I)$: Part 3

<table>
<thead>
<tr>
<th>Model $\eta_A(I)$</th>
<th>Model $\eta_B(I)$</th>
<th>Model $\eta_C(I)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Estimate (± SE)</td>
<td>Parameter</td>
</tr>
<tr>
<td>k, mW</td>
<td>$-251 ± 6$</td>
<td>k, mW</td>
</tr>
<tr>
<td>α, m²/W</td>
<td>$0.71 ± 0.04$</td>
<td>ϵ, m²W$^{1/2}$</td>
</tr>
<tr>
<td>ϵ, m²W$^{1/2}$</td>
<td>$0.404 ± 0.003$</td>
<td>ϵ, m²W$^{1/2}$</td>
</tr>
<tr>
<td>AIC = -746</td>
<td>AIC = -651</td>
<td>AIC = -687</td>
</tr>
</tbody>
</table>

SEs are computed as the diagonal elements of the inverse Hessian matrix evaluated at the minimum. The AIC values for all choices of $\eta(I)$ are much larger than the AIC value for the best fit of the Keller-Segel model with generalized receptor law (AIC = $-1,398.5$) performed by minimizing the χ^2 as in Eq. S10, strongly suggesting that Eq. S6 is inadequate to describe the experimental data.