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Phototaxis, the process through which motile organisms direct their
swimming toward or away from light, is implicated in key ecological
phenomena (including algal blooms and diel vertical migration) that
shape the distribution, diversity, and productivity of phytoplankton
and thus energy transfer to higher trophic levels in aquatic ecosys-
tems. Phototaxis also finds important applications in biofuel reactors
and microbiopropellers and is argued to serve as a benchmark for
the study of biological invasions in heterogeneous environments
owing to the ease of generating stochastic light fields. Despite its
ecological and technological relevance, an experimentally tested,
general theoretical model of phototaxis seems unavailable to date.
Here, we present accurate measurements of the behavior of the alga
Euglena gracilis when exposed to controlled light fields. Analysis of
E. gracilis’ phototactic accumulation dynamics over a broad range of
light intensities proves that the classic Keller–Segel mathematical
framework for taxis provides an accurate description of both positive
and negative phototaxis only when phototactic sensitivity is mod-
eled by a generalized “receptor law,” a specific nonlinear response
function to light intensity that drives algae toward beneficial light
conditions and away from harmful ones. The proposed phototactic
model captures the temporal dynamics of both cells’ accumulation
toward light sources and their dispersion upon light cessation. The
model could thus be of use in integrating models of vertical phyto-
planktonmigrations in marine and freshwater ecosystems, and in the
design of bioreactors.
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Microorganisms possess a variety of sensory systems to ac-
quire information about their environment (1), including

the availability of resources, the presence of predators, and the
local light conditions (2). For any sensory system, the system’s
response function determines the organism’s capability to pro-
cess the available information and turn it into a behavioral response.
Such a response function is shaped by the natural environment and
its fluctuations (3–5) and affects the search strategy [be it mate
search, food search, etc. (6, 7)] and the swimming behavior of mi-
croorganisms (8). Gradient sensing is particularly important in
marine and freshwater ecosystems, where the distribution of re-
sources is highly heterogeneous (9, 10) and the ability to move to-
ward resource hot spots can provide a strong selective advantage to
motile organisms over nonmotile ones (2, 5). Spatiotemporal pat-
terns of light underwater contribute to the heterogeneity of the
aquatic environment. Because light is a major carrier of energy and
information in the water column (11), phototaxis is a widespread
case of directed gradient-driven locomotion (12, 13), found in many
species of phytoplankton and zooplankton. Phototaxis strongly af-
fects the ecology of aquatic ecosystems, contributing to diel vertical
migration of phytoplankton, one of the most dramatic migratory
phenomena on Earth and the largest in terms of biomass (14). Diel
vertical migration is crucial for the survival and proliferation of
plankton (13, 15, 16), may affect the structuring of algal blooms
(17), and allows plankton to escape from predation by filter-feeding

organisms. Because phytoplankton are responsible for one-half of
the global photosynthetic activity (18, 19) and are the basis of ma-
rine and freshwater food webs (20), their behavior and productivity
have strong implications for ocean biogeochemistry, carbon cycling,
and trophic dynamics (21, 22).
The quantitative understanding and the associated development

of mathematical models for the directed movement of microor-
ganisms have been largely limited to chemotaxis, while other forms
of taxis have received considerably less attention despite their
ecological importance. For chemotaxis, quantitative experiments
have led to a comprehensive characterization of the motile re-
sponse of bacteria to chemical gradients (23, 24), and this knowl-
edge has been distilled into detailed mathematical models (25).
Continuum approaches such as the Keller–Segel model (26, 27),
and its generalizations (25), have been used extensively to describe
the behavior of chemotactic bacterial populations in laboratory
experiments. However, although a limited number of models for
phototaxis exists (28–31), an assessment of the phototactic response
function is lacking. Existing models rely on untested working hy-
potheses concerning the cell response to light, originating from the
scarcity of experimental work linking controlled light conditions to
measured organism responses (SI Discussion).
Here, we present quantitative experimental observations of

the phototactic response of the flagellate alga Euglena gracilis to
controlled light gradients. E. gracilis is a common freshwater
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phytoplankton species that swims via an anterior flagellum and
uses a paraflagellar body and red stigma (a red eyespot) (32) to
respond to light gradients. E. gracilis has been used extensively as
a model organism in both the ecological (33, 34) and the eco-
physiological literature (35, 36) and has been used as a candidate
species for technological applications such as photobioreactors
(37) andmicropropellers (38, 39).We use the experimental results to
identify a mathematical model for phototaxis. We find that a Keller–
Segel-type model (26, 27) accurately describes cell accumulation
patterns at all light intensities tested and that the light sensitivity of
E. gracilis is described by a generalized receptor law (25, 40), a
nonlinear function of light intensity that displays a maximum at the
light intensity at which cells preferentially accumulate.

Results
We performed laboratory experiments with E. gracilis to track
the response of algal populations to imposed light conditions.
Experiments were conducted in linear channels (5 mm wide ×
3 mm high × 2 m long) filled with cells (2,100 ± 200 cells·mL−1)
suspended in nutrient medium (Fig. 1 and Materials and Methods).
Light conditions were controlled by light-emitting diodes (LEDs),
illuminating the channels from below and operated via Arduino Uno
boards (Fig. 1 and Materials and Methods). We measured cell dis-
tributions in response to localized light sources of different intensity
and wavelength λ in the blue (λ= 469 nm) and red (λ= 627 nm)
regions of the visible spectrum. We measured the light intensity
profile IðxÞ=   I0   iðxÞ [we set ið0Þ= 1; Fig. S1; units are retained in I0]
in the linear channels (Materials and Methods) and we programmed
the LEDs to produce the following peak intensities within the
channel, at x= 0 cm (above the LED): I0 = 0.8,   2.3,   5.2,   7.8,   10.4,
20.8,   31.3 W·m−2 for λ= 469 nm and I0 = 2.6,   4.7,   10.9,   16.7
W·m−2 for λ= 627 nm. The light profile iðxÞ was determined by the
experimental setting geometry and was invariant for all values of I0.
Stationary E. gracilis accumulation patterns in blue light are

shown in Fig. 2 A–G. Fig. 2 shows that by increasing the peak
light intensity I0 from I0 = 0.8 W·m−2 to I0 = 5.2 W·m−2, cell
density peaks increase in magnitude (shown are the density
profiles normalized by the value at the boundary) and occur in
correspondence to the peak in light intensity (x= 0 cm). Then,
for larger values of I0, cell density peaks are approximately
constant in magnitude, but shift to the left and right of the
source. Cell accumulation was maximum at the light intensity
I ’ Im = 5.5 W·m−2 (Fig. 2 A–G; λ= 496 nm; Im is calculated
using the model proposed in the following paragraphs). Light
intensities higher than Im elicited negative phototaxis (directed
movement away from the light source), indicating a biphasic
response to light (Fig. 2 E–G). Such biphasic responses are
common in phototaxis, because they allow cells to increase their
photosynthetic activity by migrating toward light while prevent-
ing damage to the photosynthetic apparatus and cell pigments at
excessive light intensities (42, 43). Our experiments showed
clearly no response to red light (Fig. 2 H and I), in line with the
reported weak absorption of the E. gracilis’ eyespot at these
wavelengths (44). Red light experiments thus serve as a control
that allows us to exclude that the observed cell accumulations
toward blue light were due to factors other than phototaxis.

We measured the formation of cell density peaks in time (Fig. 3
A–C), starting from a homogeneous suspension of cells (Fig. 3A), in
the presence of a light source of peak intensity I0 = 5.2 W·m−2 at
x= 0 cm. Then, we measured the relaxation of the stationary den-
sity peaks after the removal of light (Fig. 3 D–F). This allowed us to
quantify robustly the cell diffusion coefficient, D, due to the ran-
dom component of the E. gracilis motility (45), by fitting the decay
rate of the spectral log-amplitudes logjρ̂ðk, tÞj to the square of the
wave number (Fig. 3 G and H and SI Materials and Methods). The
estimateD= 0.13± 0.04mm2·s−1 is obtained (the SE represents the
variability across the first three discrete Fourier transform modes).
The experimental results allowed us to derive a model of

phototaxis in E. gracilis. We used a Keller–Segel framework,
which consists of an advection-diffusion equation for the cell
density ρðx, tÞ (25) (neglecting cell division owing to the short
duration of the experiments):

∂ρ
∂t

ðx, tÞ= ∂
∂x

�
D
∂ρ
∂x

ðx, tÞ− dϕ
dx

½IðxÞ�ρðx, tÞ
�
, [1]

where vP = dϕ=dx is the drift velocity or “phototactic velocity” of
the population in the direction of the light gradient. The photo-
tactic velocity was written as the derivative of a phototactic po-
tential, ϕ, which is solely a function of the light intensity IðxÞ (25).
Such reformulation of the Keller–Segel model allows to express
the stationary density distribution as a function of IðxÞ. The
steady-state accumulation of cells that satisfies Eq. 1, computed
over the spatial extent of the imaging window (−L≤ x≤L;
L= 6.25 cm), is as follows:

ρðxÞ= ρðxÞ
ρð−LÞ= exp

�
ϕ½IðxÞ�

D

�
, [2]

where ρðxÞ is the normalized cell density appropriate for com-
parison with experimental observations. Note that, in general,
the exponent should be ϕ½IðxÞ�−ϕ½Ið−LÞ�, but because ϕ is de-
fined only up to an additive constant we set ϕ½Ið−LÞ�= 0. Thus, ϕ
is set to zero for I = 0 (Fig. 4B).
The stationary cell density distributions under blue light (Fig. 2

A–G) together with the measured light intensity profiles (Fig.
4A) were used to derive the phototactic potential ϕðIÞ from the
data. First, we tested the ability of the Keller–Segel model (Eq.
1) to capture the observed phototactic responses in different
light regimes. Fig. 4B (Inset) shows that the mean cell density
profiles ρðxÞ collapse on the same curve when plotted together as
functions of the light intensity (via Eq. 2), thus supporting the
applicability of Eq. 1 and the computation of ϕ via Eq. 2, that is,
ϕðIÞ=D log ρ½xðIÞ�. Second, we determined the functional form
of the phototactic potential ϕðIÞ. We compared 18 functional
forms for ϕðIÞ using an information-theoretic criterion (46)
(Materials and Methods). A comparative review of earlier models
for phototaxis is provided in SI Discussion. The functional forms
were chosen by combining monotonically increasing functions of
the stimulus I often used to describe sensing, particularly in
chemotaxis (25), with monotonically decreasing functions of I,
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Fig. 1. Sketch of the experimental setup. A LED
point source (not to scale) was placed below the
linear channels. Individuals of E. gracilis (green
dots; not to scale) accumulated in the presence of
light through phototaxis. Shown are distances from
the LED and angles of light propagation in water,
computed using Snell’s law. The light direction
component orthogonal to the channel was dis-
regarded here, because the cells’ movement dynamics in the vertical direction was dominated by gravitaxis (41), which resulted in the accumulation of
cells at the top of the channel (SI Materials and Methods and Fig. S6).
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accounting for the photophobic behavior shown experimentally
at high light intensity.
By fitting each of the above models (Table S1 and Figs. S2 and

S3) to the phototactic potential derived from the data (Fig. 4B),
and by using the Akaike Information Criterion (AIC) (46) to
formally quantify their relative performance in simulating the
experimental patterns discounting the number of parameters, we
conclude that our proposed generalization of the receptor law
modified to account for the photophobic behavior shown at high
light intensities reads as follows:

ϕðIÞ= aI
Ic − I
Ir + I

, [3]

where a= ð1.4± 0.04Þ · 10−8 m4·W−1·s−1, Ir = 1.7± 0.1 W·m−2,
and Ic = 28.0± 0.3 W·m−2 (SEs are calculated via nonlinear least-
squares fitting). The phototactic potential displays a maximum
(ϕ= 1.8 mm2/s) at Im = 5.5W·m−2 (Fig. 4B), the light intensity value
that separates the positive and negative phototaxis regimes, and
is equal to zero at Ic = 28.0W·m−2. The phototactic velocity vP =
dϕ=dx corresponding to Eq. 3 in our experimental light condi-
tions is shown in Fig. S4. Eq. 3 yields the best model for phototaxis
in E. gracilis in reproducing the measured stationary cell density
profiles (Fig. 4 C and D).
The proposed phototaxis model, although derived from sta-

tionary distributions, correctly captures also the temporal dynamics
of phototaxis (red dashed lines in Fig. 3 A–F), that is, the formation
of density peaks in the presence of light and their subsequent
dissipation following light removal (note that Eq. 1 reduces to
the diffusion equation in the absence of light stimuli). Small
deviations from the model prediction during cell accumulation
(Fig. 3 A–C) are observed. They are possibly due to the repeated
transfers of the channel from the illumination setup to the ste-
reomicroscope for algal density measurements.

Discussion
To compare our experimental setup with natural environments,
we note that integrating the ASTM G-173 reference terrestrial

solar spectral irradiance (47) in a wavelength window of 10 nm
centered at λ= 469 nm (10 nm is the typical width of emission for
our LEDs; Materials and Methods) gives a typical irradiance of
∼13 W·m−2 at sea level. Wavelengths in the blue region of the
visible spectrum are among the most transmitted in natural
aquatic habitats (11, 48) and penetrate the farthest in the water
column, whereas red light is the most attenuated. Thus, the
range of light intensities and wavelengths used in the experi-
ments is typical of natural conditions, suggesting that our ex-
perimental and theoretical results may have implications for the
behavior of phytoplankton in natural environments.
The response of cells to light of different intensities, here

expressed in terms of the phototactic potential ϕðIÞ, was inferred
from measured stationary cell density profiles. However, the
model was shown to capture also the temporal dynamics of cell
accumulation around a light source and the diffusive relaxation
following light removal. Interestingly, the proposed choice of re-
ceptor law, subsumed by ϕðIÞ, includes both positive and negative
phototaxis within the same mathematical framework. Although we
cannot exclude that phototactic microorganisms may in general
sense both the intensity and directionality of light, our model
based on intensity alone outperforms other models including both
intensity and directionality of light propagation (SI Discussion,
Fig. S5, and Tables S1–S5), at least for our experimental setting.
Our experimental approach to phototaxis provides a template

for the study of ecological processes in shifting and fluctuating
resource availability. In fact, the convenient use of programmable
LEDs allows one to create microbial microcosms in which light
conditions can be accurately controlled to generate a boundless
variety of spatiotemporal patterns of environmental stochasticity,
affecting both the growth and the movement behavior of cells.
Hence, the study system developed here is suggested to be a
promising candidate for quantitative microcosm experiments on
biological invasions along ecological corridors, range expansions,
and source-sink dynamics under environmental noise (49–52).
All things considered, we suggest that the literature lacked an

experimentally tested mathematical framework comprising a
measure of the phototactic response function of phototactic pop-
ulations. This work is thus suggested to provide the blueprint for

A B C

D E

G H I

F

Fig. 2. Phototaxis of E. gracilis toward blue and red
light of different intensities. Shown are normalized
stationary cell density profiles ρðxÞ around a light
source located at x = 0 cm for various peak intensities
I0 in the blue (A–G; λ= 469 nm) and red (H and I;
λ= 627 nm) regions of the visible spectrum. The col-
ored curves in A–G are the experimental cell density
distributions (five replicates for each value of I0), and
the dashed black lines denote the mean. The gray-
scale bars below A–G show the imposed blue light
intensity profiles IðxÞ, where the gray level scales lin-
early (upper bar) or logarithmically (lower bar) with I;
white corresponds to I= 31 W·m−2 and black to
I= 0.001 W·m−2. Positive phototaxis (directed move-
ment toward the light source) is observed with blue
light up to I ’ Im = 5.5 W·m−2, which is the value of
light intensity that causes the highest attraction of
algae compared with both lower and higher values
(E–G) of I. For I> Im, negative phototaxis (directed
movement away from the light source) is observed.
No phototactic behavior is discernible with red light
(H and I) (three replicates for each value of I0).
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the characterization of the collective response of phytoplankton to
light availability and its migration strategies in aquatic ecosystems.
Identification of the light intensity regime where positive and
negative phototaxis occur pinpoints the regions of the water col-
umn where phototactic effects affect the vertical distribution of
phytoplankton. Currently, models of phytoplankton growth in
contrasting gradients of light and nutrients aimed at reproducing
the vertical distribution of phytoplankton, either ignore phototaxis
(53) or rely on untested assumptions for the phototactic advection
velocity vP = dϕ½IðxÞ�=dx (54, 55). The identification of the func-
tional form for ϕðIÞ provided here can be used directly to integrate
realistic predictions for the phytoplankton vertical distribution,
which is relevant for global biogeochemical cycles, diversity and
coexistence of plankton species, and ecosystem functioning (56,
57). The interspecific variability of the optimal light intensity [de-
fined by dϕðIÞ=dI = 0] and nutrient requirements have been argued
(58) to translate into a sectoring of the water column into separate
niches, allowing the coexistence of competitive species.
The mathematical framework derived here may also serve to

improve the design of algal bioreactors. Phototaxis of swimming
algae, sometimes in combination with other directional behaviors
such as gravitaxis (the directed swimming in response to gravity)
and gyrotaxis (gravitaxis in the presence of ambient velocity gra-
dients), is speculated to have implications for the design of algal

photobioreactors. The phototaxis model proposed here (Eq. 1)
may be used directly to refine existing models for photo-gyrotactic
(31) and photo-gyro-gravitactic (59) bioconvection, which cur-
rently rely on educated guesses for the phototactic advection term.
Our model may be applied to identify optimal designs for cell
accumulation far from the reactor surface to avoid biofouling and
to achieve enhanced harvesting, a strategy that has been in-
vestigated experimentally (37). For example, the fact that the
phototactic potential ϕ is much steeper for light intensities above
Im = 5.5 W·m−2 than below such value, and hence the phototactic
velocity is larger for I > Im, suggests that the exploitation of neg-
ative phototaxis might be a more effective strategy than the use of
positive phototaxis to achieve optimal harvesting.
Algae are also increasingly used in microbiomachine research,

for example as micropropellers for the transport of colloidal cargo
(38, 39), where light can be used as the external driver of the
motion. Although this research is yet to translate into practice, it
represents an exciting avenue to harness microbial motility for
controlled microscale applications, and phototaxis represents one
of the most controllable processes because of the ease of accurately
imposing and rapidly modulating external light gradients. The
algorithms that are currently used to control such microbio-
machines are mostly empirical, and our model may indeed
serve to render machine control more robust and accurate. Much
attention is currently dedicated to understanding the swimming
behavior in these artificial environments (60) and our character-
ization of collective phototactic dynamics might be exploited to
optimize existing technological applications or design new ones.
In the broadest sense, our work provides a blueprint for ob-

taining robust, quantitative data on directed cell motility, and
our method is straightforward to extend to diverse photo-
synthetic species of plankton, enabling a better understanding
of how these important organisms move and live in natural or
man-made heterogeneous environments.

Materials and Methods
Algal Culture. The species used in the experiments, E. gracilis, was purchased
from Carolina Biological Supply and maintained in a nutrient medium (33,
34) composed of sterilized spring water and Protozoan Pellets (Carolina Bi-
ological Supply) at a density of 0.45 g·L−1, filtered through a 0.2-μm filter.
Algal cultures were initialized 2 wk before the start of the experiment and

A B C

D E F

G H

Fig. 3. Temporal dynamics of accumulation around
a light source at x = 0 cm (A–C) and relaxation of cell
density peaks upon removal of light (D–H). (A–F)
Experimental cell density profiles at different times.
The shaded gray area is delimited by the maximum
and minimum cell densities of three replicate ex-
periments and the black line denotes the mean. The
red dashed line shows the theoretical prediction,
Eq. 1, using the experimentally determined ϕðIÞ and
IðxÞ (Fig. 4 A and B) and D (Table 1) determined
experimentally from the relaxation of density peaks
(D–H). Density profiles are renormalized to display
the same mean abundance. The grayscale bars be-
low A–C show the light intensity profile imposed
during the accumulation; the gray level scales lin-
early (upper panels) or logarithmically (lower pan-
els) with the intensity I, with white corresponding
to I= 5.2 W·m−2 and black to I= 0.001 W·m−2. The
temporal decay of Fourier modes (G) during the
relaxation of density peaks (D–F) is exponential
[logjρ̂ðk, tÞ=ρ̂ðk, tÞj=−Dk2t; data in black and linear
fit in red], and the decay rate is a quadratic function
of the wave number k (H; data in black and para-
bolic fit in red), proving the diffusive behavior in
the absence of light gradients.

Table 1. Parameters describing the phototactic response and
movement dynamics of E. gracilis

Parameter Value

Phototactic response
a ð1.4± 0.04Þ · 10−8 m4·W−1·s−1

Ir 1.7±0.1 W·m−2

Ic 28.0± 0.3 W·m−2

Movement dynamics
D 0.13±0.04 mm2·s−1

Values shown are mean ± SE. The parameters a, Ir, and Ic define the pho-
totactic potential ϕ. The diffusion coefficient D was estimated via the relaxa-
tion of density peaks (Fig. 3 D–H). See SI Materials and Methods and Figs. S7
and S8 for measurements of the movement dynamics of individual cells.
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kept at a constant temperature of 22 ° C under constant LED light at
λ= 469 nm. E. gracilis individuals have a typical linear size of 14 μm (34), and
the duplication time is ∼20 h (33); thus, reproduction can be neglected in our
experiments.

Linear Landscapes. The linear landscapes (Fig. 1) used in the experiments
were channels drilled on a Plexiglas sheet (61). A second Plexiglas sheet
was used as a cover, and a gasket prevented water spillage. Before the
introduction of the algal culture to the linear landscapes, the Plexiglas
sheets were sterilized with a 70% (vol/vol) ethanol solution, and the gas-
kets were autoclaved.

Light Sources and Light Intensity Profile. A linear array of LEDs was developed
to control the light intensity profile along the linear landscapes. LEDs were
placed below the linear channels (Fig. 1). RGB (red, green, blue) LED strips
(LED: SMD 5050; chip: WS2801 IC) were controlled via Arduino Uno boards.
The LED strips consisted of individually addressable LEDs separated by a
distance of 3.12 cm. The light intensity for the B (blue) and R (red) color
channels (wavelengths of 463–475 and 619–635 nm, respectively) could be
controlled. We measured the total radiant flux emitted by LEDs at the dif-
ferent intensities and wavelengths used with a calibrated photodiode. The
relative light intensity profiles, with the LEDs set at the different intensities
used, was measured by placing a white paper sheet in the linear channels
and measuring the irradiance on the sheet with a digital camera operated in
grayscale at fixed aperture, exposure, and distance from the LED. This rel-
ative measure of light intensity was converted to absolute values via the
total radiant flux measured. In the experiments, periodic light intensity
profiles were established with one LED switched on every 12.5 cm. The ex-
perimentally measured relative light intensity profile iðxÞ was found to be
well described by the functional form iðxÞ= c0=ðx2 + c21Þ2 (Fig. S1).

Density Measurements. Density profiles were measured at the center of the
linear landscape across one entire period of the light intensity profile. Density
estimates were obtained by placing the linear landscape under the objective of a
stereomicroscope (Olympus SZX16), taking pictures (with the camera Olympus
DC72), and counting individuals through image analysis as in ref. 61. Stationary
density profiles were measured after 210 min from the introduction of cells in
the landscape. In the phototactic accumulation measurements, the landscapes
were moved from the support holding the LEDs used for experimentation to

the stage of the stereomicroscope just before performing the density mea-
surement. Imaging of the 12-cm imaging window took less than 30 s. Thereby,
we assume that no significant relaxation or redistribution of algae occurred
during the measurement time. To measure the relaxation of density peaks, the
linear landscapes were placed on the stage of the stereomicroscope and the
white LED light for microscopy was switched on solely during the measurement
time. Landscapes were covered with black cardboard and kept in a dark room
to avoid external light during all of the experiments, except during imaging.

Phototactic Potential. To investigate the suitable functional form of the pho-
totactic potential, we combined a set of models that have been used to describe
sensing in chemotaxis (25) with a set of monotonically decreasing functions
aimed at reproducing the photophobic behavior at high light intensity. The
resulting functional forms were formally compared via the AIC to probe their
performance in reproducing our laboratory data. The first set, which consists of
monotonically increasing functions of light intensity, is as follows: ϕ1ðIÞ= aI,
ϕ2ðIÞ= a  I=ð1+bIÞ, and ϕ3ðIÞ= a logð1+bIÞ. These functional forms have
been used to describe chemotactic responses (25). The second set consists of
monotonically decreasing functions of light intensity I, specifically: ϕAðIÞ=
−logð1+ cIÞ, ϕBðIÞ=−c

ffiffi
I

p
, and ϕC ðIÞ=−cI, respectively. The functional forms in

the second set were chosen to allow limI→∞ϕ=−∞ (some of the combinations
do not satisfy this limiting behavior; e.g., Fig. S3). In fact, experimental obser-
vations show that ρðxÞ= 0 if the light intensity in x grows too large. In such case,
ϕðxÞ=D log½ρðxÞ�=−∞. Models from the first set were combined with models
from the second set both in additive and multiplicative fashions (SI Materials
and Methods). We fitted all models to the data (Figs. S2 and S3) and computed
the corresponding AIC values (Table S1). The best model according to the AIC is
ϕ2C = aIð1− cIÞ=ð1+bIÞ.
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SI Materials and Methods
Density Estimates and Video Recording. Border effects were neglec-
ted because the density measurements were always performed at
the center of the landscape, which had a total length (2 m) that was
much larger than the length of one period of the light intensity
profile (12.5 cm). To reconstruct the trajectories, videos were
recorded with a stereomicroscope (Materials and Methods) and
particle tracking was performed automatically with the MOSAIC
(1) plug-in for ImageJ under homogeneous light conditions and
manually with the MTrackJ plug-in for ImageJ in the presence of
nonuniform light (automatic tracking was not possible in the
nonuniform light setup because of the low quality of pictures, due
to the use of only one LED light for the microscopy).

Vertical Distribution of Cells. Cells were observed to accumulate on
one layer at the top of the channel, both in the presence and in the
absence of light. This vertical distribution of cells is not due to
phototaxis, but is caused by a phenomenon known as negative
gravitaxis, that is, the movement of Euglena gracilis in the direction
opposed to gravity (2). In fact, the distribution of algae is skewed
toward the top of the channel regardless of the positioning of the
LED above or below the linear landscapes, as shown in Fig. S6.
Such skewed distribution of algae in the vertical direction bears no
implications for the validity of our results once the density dis-
tribution data are integrated in the vertical direction.

Population Estimate of the Diffusion Coefficient. The population
estimate of the diffusion coefficient D (Table 1) was based on the
relaxation of density peaks (Fig. 3 D–H). Density profiles at dif-
ferent times were Fourier-transformed in space and the decay of
their log amplitudes log½jρ̂ðk, tÞj=jρ̂ðk, 0Þj� in time was fitted to the
linear model −Dk2t for k= 1,2,3 (Fig. 3G) in all experimental rep-
licates. The mean exponential decay rate as a function of k across
replicas was then fitted to the parabola Dk2 (Fig. 3H) to estimate D.

Phototactic Potential. To investigate the functional form of the
phototactic potential, we combined a set of models that have been
used to describe sensing in chemotaxis (3) with a set of mono-
tonically decreasing functions aimed at reproducing the photo-
phobic behavior at high light intensity. The resulting functional
forms were compared via the Akaike Information Criterion
(AIC) to compare their performance in predicting the data. The
first set of models, which consists of monotonically increasing
functions of light intensity, is as follows:

·   ϕ1ðIÞ= aI,

·   ϕ2ðIÞ= a
I

1+ bI
,

·   ϕ3ðIÞ= a logð1+ bIÞ.
These models have been used extensively to describe chemotactic
responses (3). The second set of models consists of monotoni-
cally decreasing functions of light intensity I:

·   ϕAðIÞ=−logð1+ cIÞ,

·   ϕBðIÞ=−c
ffiffi
I

p
,

·   ϕCðIÞ=−cI.

The functional forms in the second set were chosen to allow
limI→∞ϕ=−∞ (some of the combinations do not satisfy
this limiting behavior, resulting in poor fits; e.g., Fig. S3).
In fact, experimental observation show that ρðxÞ= 0 if the
light intensity in x is too high. In such situation, ϕðxÞ=
D log½ρðxÞ�=−∞. Models from the first set were combined with
models from the second set both in a multiplicative (e.g.,
ϕ1A =ϕ1 · ð1+ϕAÞ= aI½1− logð1+ cIÞ�) and additive [e.g., ϕ1A =
ϕ1 +ϕA = aI − logð1+ cIÞ] fashion. We fitted all models to the
data (Figs. S2 and S3) and computed the corresponding AIC
values, which are reported in Table S1. The best model accord-
ing to the AIC is ϕ2C = aIð1− cIÞ=ð1+ bIÞ; all other models have
a ΔAIC value (compared with the best model) larger than 7 and
are thus unlikely (4). The AIC is unable to distinguish between
the additive and multiplicative form of the model combination
ϕ2 and ϕC, because the ΔAIC difference between the additive
combination, ϕ2C = aI=ð1+ bIÞ− cI, and the multiplicative one,
ϕ2C = aIð1− cIÞ=ð1+ bIÞ, is only ΔAIC=−0.0005. We thus as-
sumed the combination yielding the smallest AIC index, the
multiplicative one, as the best model.

Swimming Trajectories.To characterize the swimming behavior at the
single-cell level, we recorded trajectories of individual E. gracilis
cells (Fig. S7), both in a uniform light field and within a nonuniform
one. The statistics of cell motion in uniform light (Fig. S7) are in
good agreement with the Ornstein–Uhlenbeck (OU) process (5, 6):

�
_x= v
_v=−γv+ σηðtÞ , [S1]

where x is the (one-dimensional) position of the cell, v is its
instantaneous velocity, and ηðtÞ is a Gaussian white noise. The
diffusive behavior observed at the population level finds confir-
mation by the analyses at the level of individual cells at much
smaller spatial and temporal scales (Fig. S7C). In fact, a quan-
titative agreement between the diffusion coefficients at the two
scales is observed. However, no net displacement is observable at
the single-cell scale over the duration (60 s) of tracking trajec-
tories recorded in nonuniform light, because the random com-
ponent of the motion dominates over phototactic drift. A
mathematical framework for the motion of individual cells in
the presence of nonuniform light fields is proposed in the fol-
lowing section and is used therein to explain the impossibility to
observe a net bias toward the source in the experimental trajecto-
ries at such timescales. The analysis of individual trajectories that
characterizes the typical swimming behavior of cells provides infor-
mation on the instantaneous speed v and the typical autocorrelation
time τ of swimming trajectories. This might be of interest in view of
phototactic applications of microorganisms as micropropellers.
Uniform light.We measured 330 trajectories of cells through dark-
field microscopy, placing the recording window at the center of
the microscope stage to minimize light gradients and thus bias in
the direction of motion. We analyzed the recorded trajectories by
computing the mean square displacement, mean square velocity,
velocity autocorrelation, and velocity distribution along the di-
rection of the channel (Fig. S7). We analyzed the x coordinates of
the recorded trajectories, that is, the coordinate of each in-
dividual in the direction of the linear landscape, which was also
the direction of the light gradient under the nonuniform light
conditions. The statistics (Fig. S7) of cells’ motion in uniform light
are in good agreement with the OU process (5, 6). Specifically, the
mean square displacement hΔx2ðtÞi, mean square velocity hv2ðtÞi,
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and velocity autocorrelation hvðtÞvð0Þi were fitted to their ana-
lytical expressions (5):

�
Δx2ðtÞ�OU =

σ2

γ2

�
t−

2
γ
ð1− e−γtÞ+ 1

2γ
�
1− e−2γt

�	
+

v20
γ2
ð1− e−γtÞ2,

[S2]

�
v2ðtÞ�OU = v20e

−2γt +
σ2

2γ


1− e−2γt

�
, [S3]

hvðtÞvð0ÞiOU = v20e
−γt. [S4]

The quantity γ−1 measures the typical timescale of the velocity
autocorrelation, whereas σ describes the degree of stochasticity
of the motion. The fit was performed simultaneously for the
three curves (red lines in Fig. S7), that is, the best fit parameters
for γ and σ were those that minimized the χ2:

χ2 = 1=2

"XT
t=1

��
Δx2ðtÞ�data − �

Δx2ðtÞ�OU

�2.
σ2hΔx2ðtÞi

+
XT
t=1

��
v2ðtÞ�data − �

v2ðtÞ�OU

�2.
σ2hv2ðtÞi

+
XT
t=1

�hvðtÞvð0Þidata − hvðtÞvð0ÞiOU

�2.
σ2hvðtÞvð0Þi

#
,

where σ2 indicates the SE of the mean in the data. The param-
eters’ errors are given by the square root of the diagonal ele-
ments of the Hessian matrix, which is evaluated at the minimum.
This fitting procedure provided the estimates γ = 0.077± 0.014 s−1

and σ = 0.032± 0.004 mm/s3/2 (mean ± SE). The cyan lines in Fig.
S7 were obtained by fitting the velocity autocorrelation to its
analytical expression Eq. S4 and subsequently fitting σ separately
to the mean square displacement via Eq. S2 and to the mean
square velocity via Eq. S3. This fitting procedure provided the
estimates γ = 0.054± 0.014 s−1 and σ = 0.025± 0.003 mm/s3/2

(mean ± SE). The diffusive behavior observed at the population
level finds additional confirmation at the individual level (at
times t> γ−1 = τ; Fig. S7C), with quantitative agreement between
the diffusion coefficients at the two scales [for the trajectories
data, D= σ2=ð2γ2Þ= 0.09± 0.04mm2·s−1, where we have used the
mean values of γ and σ obtained with the two fitting procedures].
The mean (instantaneous) swimming speed of E. gracilis cells
was v= 0.10± 0.05 mm·s−1, mean ± SE.
Nonuniform light. We measured 130 trajectories of individual or-
ganisms that were recorded in the presence of an imposed non-
uniform light field (Fig. S8), obtained by placing a LEDwith I0 = 5.2
W·m−2 at the right border of the imaging window, and found no
net displacement toward the light source (Fig. S8B). The mean
(instantaneous) swimming speed of E. gracilis cells was the same in
nonuniform (v= 0.10± 0.04 mm·s−1; mean ± SE) and uniform light.
The mean phototactic velocity vP = hdϕ=dxi in the imaging window
(the mean is computed over space) (Eq. 2) is vP = 0.007 mm·s−1;
therefore, the directionality of swimming vP=v= 0.07 is very small.
Despite the difficulty of discerning phototaxis at the single-cell

level, the good agreement of trajectory statistics with the OU
model in uniform light and the observation of accumulation dy-
namics around light sources at the population level suggest the
following Langevin model for the phototaxis of individual cells,

8<
:

_x ¼ v

_v ¼ − γvþ σηðtÞ þ γ
dϕ½IðxÞ�

dx

, [S5]

where x is the (one-dimensional) position of the cell, v is its
instantaneous velocity, ηðtÞ is a Gaussian white noise, and
ϕ½IðxÞ� is the phototactic potential. In the presence of nonuni-
form light, the term γdϕ½IðxÞ�=dx in Eq. S5 drives the accumula-
tion of individuals around the light source in the long term. This
single-cell model is consistent with the Keller–Segel model at the
population scale (Eq. 1) and reduces to the OU model in the
absence of external gradients. However, given that we could not
discern the biased movement toward the light source at the in-
dividual cell level, no direct evidence of the applicability of Eq.
S5 is available and further experimentation is required.
To interpret the failure to detect a bias toward the light source,

we performed 1,000 integrations of Eq. S5, with initial positions
drawn uniformly at random in the range ½− 10.5 mm, −1 mm�
(i.e., the visible region in the data) and with initial velocities drawn
according to the stationary velocity distribution of the OU pro-
cess. Fig. S8B (Inset) shows a plot of the computed mean dis-
placement hΔxðtÞi and SD in the simulations. Fig. S8B elucidates
why no discernible net displacement toward the light source is
appreciable in the data, that is, the random motion of E. gracilis
dominates over the drift toward the source at these spatial and
temporal scales. Accordingly, phototactic accumulation of den-
sity peaks takes place in a time frame much larger than the
typical persistence time τ= 1=γ = 15 s. Therefore, the model Eq.
S5 provides interpretation for the impossibility to observe a net
bias toward the source in the experimental trajectories.

The Expansion of the Fokker–Planck Equation. The expansion of the
Fokker–Planck equation for the Langevin Eq. S5 in γ−1 is ac-
ceptable because the typical persistence time τ= γ−1 = 15 s of the
trajectories is much smaller than the typical timescale for the
macroscopic dynamics. An intuitive derivation of the expansion
can be obtained by neglecting the inertial term _v in Eq. S5
[a technique known as adiabatic elimination of fast variables
(6)], which results in the Langevin equation _x= ðσ=γÞηðtÞ+
ðdϕ=dxÞ½IðxÞ�. The corresponding Fokker–Planck equation de-
scribing the time evolution of the probability density func-
tion ρðx, tÞ is then ð∂ρ=∂tÞðx, tÞ= ðσ2=2γ2Þð∂2ρ=∂x2Þðx, tÞ− ð∂=∂xÞ
½ðdϕ=dxÞ½IðxÞ�ρðx, tÞ�, which is equivalent to Eq. 1 forD= σ2=ð2γ2Þ.
Numerical Integration. To compute the time evolution of algal
accumulation according to the Keller–Segel model (Fig. 3), we
integrated Eq. 1 numerically with the method of lines (7) in the
domain x∈ ½−6.25, 6.25� cm, whose total length of 12.5 cm cor-
responds to one period of the periodic light intensity profile
established in the experiments. The initial condition was uniform
and equal to the mean cell density. Reflecting boundary condi-
tions were set at the border of the domain. Eq. S5 was integrated
numerically with the Euler–Maruyama method of order 1=2 to
compute the model predicted mean displacement and SD for the
experimental settings (Inset in Fig. S8B). The light intensity
profile used in the numerical integrations of Eq. 1 and Eq. S5
was the best fit of the equation IðxÞ= c0=ðx2 + c21Þ2, which ap-
proximates very well the measured profile (Fig. S1).

SI Discussion
Sensing of Light Directionality Cannot Explain the Data. One might
wonder whether amodel based on the sensing of the directionality
of light propagation, as opposed to its intensity, could explain the
experimental results. In our experimental setup, such model
would read as follows:

∂ρðx, tÞ
∂t

=
∂
∂x

�
D
∂ρðx, tÞ
∂x

− k  signðxÞρðx, tÞ
	
, [S6]

where the advection velocity is k and the term signðxÞ accounts
for the directed movement of cells in the direction of light
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propagation (the light source is placed at x= 0). This model
predicts a stationary algal density profile proportional to
expð−k=DjxjÞ, a cusp centered at the origin, which is in stark
contrast with the shape of the experimental algal density distri-
butions and with its dependence on light intensity (Fig. 2 A–G).
Fig. 2 A–G shows that, despite the light source being always
placed at x= 0 and the direction of light propagation being thus
invariant across the panels, the algal density profiles in the pres-
ence of different light intensities are dramatically different, an
effect due solely to the variation in light intensity. Thus, at least
in our experimental setup, including light intensity in the photo-
tactic potential is necessary to reproduce the observed accumula-
tion patterns and dynamics.
Here, we show that also phototactic models based on the sensing

of the directionality of light propagation with an advection velocity
dependent on light intensity provide a poor fit to the measured
stationary distributions. Specifically, we study the class of models
defined by the advection-diffusion equation:

∂ρðx, tÞ
∂t

=
∂
∂x

�
D
∂ρðx, tÞ
∂x

− kη½IðxÞ�signðxÞρðx, tÞ
	
, [S7]

which is a generalization of Eq. S6. The phototactic velocity
dependence on light intensity is given by kη½IðxÞ�. For any
η½IðxÞ�, the stationary algal density distribution for such model,
in the presence of the light intensity profile IðxÞ (with x∈ ½−L,L�),
is equal to the following:

log
ρðxÞ
ρð−LÞ=

k
D

Zx

−L

dy  η½IðyÞ�signðyÞ. [S8]

Note that Eq. S8 does not predict the data collapse observed in
our data (Fig. 4B, Inset). The observation of such collapse is
already an indication that Eqs. S7 and S8 may not provide a
good fit to the experimental data.
To study the performance of Eq. S8 in fitting the data, we fit

simultaneously the stationary density distribution data log½ρðxÞ=
ρð−LÞ� against the function ðk=DÞ R x

−L dy  η½IðyÞ�signðyÞ, for all
values of I0 simultaneously. To do so, we minimized the χ2:

χ2 =
X7
j=1

ZL

−L

dx

"
k
D

Zx

−L

dy  η


I0,jiðyÞ

�
signðyÞ− log

ρjðxÞ
ρjð−LÞ

#2

, [S9]

where I0,j identifies the jth value of the experimental peak light
intensities and ρj is the stationary density distribution measured
with peak light intensity I0,j. The best fit of Eq. S8 is compared
with the best fit of the generalized Keller–Segel model derived in
the main text (Eq. 1 of the main text with ϕ as in Eq. 3 of the
main text) via the AIC. To perform a fair comparison between
models, the best fit of Eq. S8 for various choices of ηðIÞ is com-
pared here to the best fit of the generalized Keller–Segel model
obtained by minimizing the χ2:

χ2 =
X7
j=1

ZL

−L

dx

"
1
D
aI0,jiðxÞ Ic − I0,jiðxÞ

Ir + I0,jiðxÞ− log
ρjðxÞ
ρjð−LÞ

#2

, [S10]

instead of fitting the phototactic potential ϕ= aIðIc − IÞ=ðIr + IÞ
from the data collapse of log½ρ=ρð−LÞ� vs. I (Fig. 4B), as was
done in the main text.
The functional form for the advection velocity ηðIÞ in Eqs. S7

and S8 needs to account for positive phototaxis for I less than a
critical value Î and for negative phototaxis for I > Î. A sketch of
such qualitative behavior for the advection velocity is shown in

figure 1 of ref. 8. However, no functional form for the dependence
of the advection velocity on I was provided therein. Here, we
compare several different choices for ηðIÞ chosen to reproduce
such behavior. The list of functional forms for ηðIÞ investigated
here is reported in Table S2. The best-fit parameters of Eq. S8 with
ηðIÞ as in Table S2 and the corresponding AIC values are reported
in Tables S3–S5. Fig. S5 shows the corresponding best fits for the
stationary algal distributions at the different experimental peak
light intensities I0. All of the best fits of Eq. S8 with the different
choices of ηðIÞ listed in Table S2 have an AIC value much larger
than the best fit of the generalized Keller–Segel model with the
generalized receptor-law illustrated in the main text. Such result is
a strong indication that the generalized Keller–Segel model (Eqs. 1
and 3 of the main text) provides the best description of phototactic
behavior in the phytoplankton E. gracilis.

Comparison with Previous Models for Phototaxis. Two main phe-
nomenological approaches have been adopted in the literature to
model phototaxis of motile algae (8–10), both acknowledging the
lack of experimental verification. The first is a photokinetic ap-
proach (8, 9, 11), where the average swimming velocity of cells is
assumed to be a function of the light intensity I. Vincent and Hill
(8) assumed that the average cell velocity in a vertical light
gradient is given by vPðIÞ= vTðIÞ, where v is the average cell
swimming speed and TðIÞ is a suitable taxis response function
(see figure 1 in ref. 8). In the previous section, we showed that
this class of models provides an unsatisfactory fit to our data.
Analogously, Williams and Bees (9) proposed a photokinetic model
in which the average cell velocity is a linear function of I, i.e.,
vPðIÞ= v=Ic · ðI − IcÞ, equal to v in the dark and equal to zero at Ic.
The above model assumptions were taken as working hy-

potheses due to the lack of direct or indirect empirical validation
(8, 9). The need for experimental characterization of the pho-
totactic response to move beyond the linear assumption was
clearly stated therein (9). Such models described phototaxis in
relatively shallow settings (a few centimeters) where light came
uniformly from above and heterogeneity in the light availability
would be solely induced by cell shading. In refs. 8 and 9, light was
assumed to control the magnitude and the sign of the cell swim-
ming velocity, whereas the directional bias in the vertical direction
is provided by gyrotaxis and gravitaxis. Thus, cells were assumed to
exhibit no net average displacement in the absence of gravity.
Burkart and Häder (11) performed a light-trap experiment

with the alga Phormidium uncinatum and used experimental
observations to derive an advection model with average cell ve-
locity vP½IðxÞ�= α log½βIðxÞ� (for I ≥ β−1 and with α> 0), neglecting
cells diffusion. Such a model cannot reproduce the negative
phototaxis behavior observed in E. gracilis, because vP is assumed
to be a monotonically increasing function of I. Thus, cells would
accumulate at the highest available light intensity value, contrary
to our experimental results (Figs. 2 E–G and 4D, main text).
A different modeling approach consists of assuming an

advection flow proportional to the light intensity gradient,
vP½dI=dx�= χdIðxÞ=dx (χ > 0), such as in Torney and Neufeld (12),
where cell aggregation in turbulent flows was investigated the-
oretically. The proportionality of the advection flow to dI=dx
ensures the existence of a net flow toward regions of higher light
intensity. However, because vP is not a function also of the light
intensity I, possible saturating effects or photophobic behavior at
high light intensities are neglected. The response function cho-
sen by Torney and Neufeld (12) corresponds to the choice
ϕðIÞ=ϕ1ðIÞ= aI, which gives a bad fit for the data shown in Fig.
4B, even if only the data points up to Im = 5.5 W·m−2 [maximum
of the experimental ϕðIÞ] are used. Specifically, the functional
form ϕ2 performs best compared with ϕ1 and ϕ3 (ΔAIC=145 and
26, respectively), when the data for ϕ (Fig. 4B, main text) are
truncated at Im = 5.5 W·m−2.
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Other mechanistic approaches have been explored to model
phototaxis in combination with gyrotaxis. For example, Williams
and Bees (9) considered other two models: one in which cells
exhibited a center-of-mass offset dependent on light intensity;
and another in which a reactive phototactic torque was introduced.
However, because several additional processes are included,
comparison of such models with data on photo-bioconvection
patterns are difficult and mostly qualitative (10). Williams and
Bees (10) provided the first replicated experimental investigation
of photo-bioconvection patterns. They found qualitative agree-
ment between the experimental data and the model predictions
(9) for the dominant initial wavelength of bioconvective patterns
obtained via linear stability analysis (10). Limitations to the
quantitative comparison of the models and the experiments are
discussed therein (10).
In our experiments, light came from below and cells were

observed to distribute mostly on one layer at the top of the
channels. Therefore, shading was neglected (unlike in refs. 8 and
9) and light gradients are present by design owing to the ex-
perimental setup. The assumption that the phototactic velocity
vP is a function of the light intensity I (and not of I and dI=dx),
such as in refs. 8, 9, and 11, is unfeasible here, because it would
induce a net phototactic movement in uniform light settings,
without the existence of a preferential direction in the horizontal
plane. The fact that the advection velocity is a function of both I
and dI=dx is a common feature of Keller–Segel models, compare,
e.g., equation 1 in ref. 3, and ensures that no net movement is
induced in homogeneous distributions of the stimulus (be it a

chemical for chemotaxis or light for phototaxis). Our framework
differs from previous attempts to model phototaxis for the fact
that the phototactic velocity here is a function of both the light
intensity I and its spatial gradient dI=dx, i.e., vP = dϕ=dx=
dϕ=dI · dI=dx (ϕ is a function of I). A model capable of de-
scribing both the positive and negative phototaxis regimes (a
feature present in refs. 8 and 9 without direct experimental
validation, and absent in refs. 11 and 12) is deemed desirable
because negative phototaxis has important ecological conse-
quences as it allows cells to avoid harmful radiation. Moreover,
mechanisms describing both positive and negative phototaxis
contribute to vertical positioning of sensible organisms in the
water column (2), a widespread behavior in phytoplankton (13),
and were suggested as key components of technological appli-
cations, such as harvesting in photobioreactors (www.google.
com/patents/US20100237009) and toward the use of microor-
ganisms as micropropellers (14).
Compared with previous research efforts, our investigation

allowed a quantitative experimental determination of the pho-
totactic response function (embedded in the potential ϕ and, by
derivation, in the advection velocity vP) directly from cell density
patterns in a broad range of light intensities, thus allowing the
characterization of both negative and positive phototaxis regimes
within a unified mathematical framework. The simple experi-
mental settings devised allowed a direct quantitative comparison
of the model with the experiments and invites further experi-
mental investigation in more complex scenarios.
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Fig. S1. (A) A-dimensional light intensity profile iðxÞ [the light intensity profile is defined here as IðxÞ= I0iðxÞ] around a single LED, measured with a digital
camera (black line). (B) Derivative of iðxÞ computed from the digital camera measurement (black dots). The red lines are the best fit of the equation
iðxÞ= c0=ðx2 + c21Þ2 and its derivative, which was used for the integration of Eq. 1 (Fig. 3), for the calculation of the phototactic velocity (Fig. S4) and for the
integration of the Langevin Eq. S5 (Inset of Fig. S8B).

Fig. S2. Best fit of the multiplicative combinations of models for the phototactic potential, e.g., ϕ1A =ϕ1ð1+ϕAÞ. Rows and columns are labeled to identify the
models combination.
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Fig. S3. Best fit of the additive combinations of models for the phototactic potential, e.g., ϕ1A =ϕ1 +ϕA. Rows and columns are labeled to identify the models
combination.
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Fig. S4. Phototactic velocity vP =dϕ½IðxÞ�=dx in our experimental settings for different values of the peak light intensity I0, color-coded as in Fig. 4A. The light
source is placed at x = 0. The phototactic velocity vP was calculated via Eq. 3 and the best fit for the light intensity profile IðxÞ (Fig. S1).
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Fig. S5. Stationary density profiles at the various experimental peak light intensities I0 (colors as in Fig. 2, main text) according to the best fits of Eq. S8 with
the different choices for ηðIÞ listed in Table S2 (the best-fit parameters and AIC values are reported in Tables S3–S5). Insets show the corresponding best fits
for ηðIÞ.
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Fig. S6. The vertical distribution of algae is skewed toward the top of the channel. Images show the concentration of E. gracilis cells (white dots) near the top
of the channel (top row), at channel mid-depth (middle row), and near the bottom of the channel (bottom row). Images are centered at x = 0 cm, that is, where
the LED was placed. The left column shows the case in which the LED was placed above the landscape, and the right column shows the case in which the LED
was placed below the landscape. In these additional experiments, the LED was set to produce a peak intensity I0 = 5.2 W·m−2. These observations confirm that
E. gracilis accumulates near the top of the channel for any vertical position of the LED (above or below the channel).
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Fig. S7. Single E. gracilis swimming trajectories in uniform light and fit to the OU process. The recorded swimming trajectories of algae (A) along the direction
of the linear landscape resemble the OU process (B) both qualitatively (A and B) and quantitatively (C–F). (C–F) Statistics of the measured trajectories (black
dots; mean ± SE) and fit to the OU process (red and cyan lines). The simultaneous fit (red lines) of the mean square displacement (C), mean square velocity (D),
and velocity autocorrelation (E) shows that the OU represents a good description of the movement behavior of individual algae. The cyan lines were obtained
by fitting the parameter γ in the velocity autocorrelation data (E) and subsequently fitting σ in the mean square displacement (C) and mean squared velocity
(D) data separately (Supporting Information). (F) The simultaneous fit also provides a very good prediction for the stationary velocity distribution.

Fig. S8. Algal swimming trajectories in a nonuniform light. The mean square displacement of trajectories is consistent with a persistent random walk (A).
(B) Mean displacement (± SE): at these spatial and temporal scales, there is no discernible net displacement toward the light source (Δx > 0). The Inset in
B shows the mean displacement and SD of 1,000 trajectories, which were simulated according to Eq. S5. The random component of the motion is much
stronger than the force term in Eq. S5 and thus hides the mean net displacement of the individuals toward the light.

Table S1. AIC values for the best fits of all model combinations,
both multiplicative, e.g., ϕ1A =ϕ1(1+ϕA), and additive, e.g.,
ϕ1A =ϕ1 +ϕA

Multiplicative Additive

ϕA ϕB ϕC ϕA ϕB ϕC

ϕ1 58 53 76 137 −34 137
ϕ2 −172 −174 −181 −162 −167 −181
ϕ3 −163 −164 −123 44 −166 −141

Giometto et al. www.pnas.org/cgi/content/short/1422922112 8 of 9

www.pnas.org/cgi/content/short/1422922112


Table S2. Candidate functional forms for η(I)

ηAðIÞ= Ið1− βIÞ=ð1+ αIÞ ηBðIÞ= Ið1− βIÞ
ηCðIÞ= logð1+ γIÞð1− βIÞ ηDðIÞ= I½1− logð1+ δIÞ�=ð1+ αIÞ
ηEðIÞ= Ið1− logð1+ δIÞÞ ηFðIÞ= log½1+ γI�=log½1+ δI�
ηGðIÞ= Ið1− e

ffiffi
I

p Þ=ð1+ αIÞ ηHðIÞ= Ið1− e
ffiffi
I

p Þ
ηIðIÞ= log½1+ γI�ð1− e

ffiffi
I

p Þ
Functional forms for ηðIÞ aimed at reproducing the positive phototactic

behavior observed at low light intensities and the negative phototactic be-
havior observed at high light intensities.

Table S3. Best-fit parameters for the simultaneous fit of Eq. S7 to all measured stationary
density profiles at different values of I0, with different choices for η(I): Part 1

Model ηAðIÞ Model ηBðIÞ Model ηCðIÞ

Parameter Estimate (± SE) Parameter Estimate (± SE) Parameter Estimate (± SE)

k=D, m/W −250±7 k=D, m/W −51±1 k=D, 1/m −38±1
α, m2/W 1.63± 0.10 β, m2/W 0.0647±0.0008 β, m2/W 0.126±0.001
β, m2/W 0.144± 0.002 γ, m2/W 8.2±0.7

AIC =−683 AIC =966 AIC =−573

SEs are computed as the diagonal elements of the inverse Hessian matrix evaluated at the minimum. The AIC
values for all choices of ηðIÞ are much larger than the AIC value for the best fit of the Keller–Segel model with
generalized receptor law (AIC = −1,398.5) performed by minimizing the χ2 as in Eq. S10, strongly suggesting that
Eq. S6 is inadequate to describe the experimental data.

Table S4. Best-fit parameters for the simultaneous fit of Eq. S7 to all measured stationary
density profiles at different values of I0, with different choices for η(I): Part 2

Model ηDðIÞ Model ηEðIÞ Model ηFðIÞ

Parameter Estimate (± SE) Parameter Estimate (± SE) Parameter Estimate (± SE)

k, m/W −218± 5 k, m/W −69± 1 k, 1/m −78±4
α, m2/W 0.74±0.04 δ, m2/W 0.131± 0.002 γ, m2/W 3.14±0.22
δ, m2/W 0.299±0.005 δ, m2/W 0.269±0.004

AIC =−772 AIC =698 AIC =−726

SEs are computed as the diagonal elements of the inverse Hessian matrix evaluated at the minimum. The AIC
values for all choices of ηðIÞ are much larger than the AIC value for the best fit of the Keller–Segel model with
generalized receptor law (AIC = −1,398.5) performed by minimizing the χ2 as in Eq. S10, strongly suggesting that
Eq. S6 is inadequate to describe the experimental data.

Table S5. Best-fit parameters for the simultaneous fit of Eq. S7 to all measured stationary
density profiles at different values of I0, with different choices for η(I): Part 3

Model ηGðIÞ Model ηHðIÞ Model ηIðIÞ

Parameter Estimate (± SE) Parameter Estimate (± SE) Parameter Estimate (± SE)

k, m/W −251± 6 k, m/W −84± 2 k, 1/m −98±5
α, m2/W 0.71±0.04 e, m/W1/2 0.273± 0.002 γ, m2/W 2.8±0.2
e, m/W1/2 0.404±0.003 e, m/W1/2 0.383±0.002

AIC =−746 AIC =651 AIC =−687

SEs are computed as the diagonal elements of the inverse Hessian matrix evaluated at the minimum. The AIC
values for all choices of ηðIÞ are much larger than the AIC value for the best fit of the Keller–Segel model with
generalized receptor law (AIC = −1,398.5) performed by minimizing the χ2 as in Eq. S10, strongly suggesting that
Eq. S6 is inadequate to describe the experimental data.
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