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Many chemotactic bacteria inhabit environments in which chemicals appear as

localized pulses and evolve by processes such as diffusion and mixing. We

show that, in such environments, physical limits on the accuracy of temporal

gradient sensing govern when and where bacteria can accurately measure

the cues they use to navigate. Chemical pulses are surrounded by a predictable

dynamic region, outside which bacterial cells cannot resolve gradients above

noise. The outer boundary of this region initially expands in proportion to

the square root of time before rapidly contracting. Our analysis also reveals

how chemokinesis—the increase in swimming speed many bacteria exhibit

when absolute chemical concentration exceeds a threshold—may serve to

enhance chemotactic accuracy and sensitivity when the chemical landscape is

dynamic. More generally, our framework provides a rigorous method for

partitioning bacteria into populations that are ‘near’ and ‘far’ from chemical

hotspots in complex, rapidly evolving environments such as those that

dominate aquatic ecosystems.
1. Introduction
In natural environments such as oceans and lakes, bacteria and other microbes

navigate chemical landscapes that can change dramatically over the time scales rel-

evant to their motility [1]. Such environments differ in fundamental ways from the

static chemical gradients typically considered in studies of microbial chemotaxis

(e.g. [2,3]). From the perspective of microbes, chemical cues in nature often

appear as localized pulses with short duration [4,5]. For example, oil droplets

from spills and natural seeps, organic matter exuded by lysed phytoplankton

or excreted by other organisms, and marine particles are common sources of

short-lived, micro-scale (approx. 10–1000 mm) chemical pulses [4]. Motile bacteria

respond to such cues by swimming up the gradients that are generated when

pulses diffuse (e.g. [5–8]). When a pulse appears, for example through the lysis

of a phytoplankton cell, the distribution of chemoattractants (often, dissolved

organic matter) changes rapidly over both space and time [9]. Because background

conditions are highly dilute, bacteria experience the early stages of a spreading

pulse as a noisy chemical gradient with low absolute concentration. In marine

environments, ephemeral, micro-scale pulses of dissolved chemicals provide a

substantial and perhaps dominant fraction of the resources used by heterotrophic

bacteria [4,9,10]. The advantage that chemotaxis confers on cells in such dynamic

environments [1,11,12] may help explain why chemotactic responses to transient

nutrient sources are so common among marine bacteria [5,6,8,10].

Although chemotaxis appears to be an important driver of bacterial compe-

tition [1], evolution [11,12] and nutrient cycling [4,9], the details of bacterial

chemotaxis behaviour are poorly characterized for all but a few well-studied

species of bacteria. An important shared feature of bacterial chemotaxis systems,

however, is that the measurements of chemical concentration that underpin

chemotaxis behaviour are subject to considerable noise [13,14]. In particular,

stochasticity in the times at which individual molecules of chemoattractant

arrive at the bacterium’s surface sets an upper bound on the precision with
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Figure 1. Measurement of ramp rate c1 by an idealized cell. (a) During a time
interval of length T, a cell travels from a region of low concentration to a region of
higher concentration, absorbing chemoattractant molecules at times ftig (spikes
in absorption time series). (b) In a static concentration field C(x), c1 is equal to
concentration slope g (slope of solid orange line) multiplied by swimming speed
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which the cell can measure changes in concentration [15,16].

Here, we demonstrate how this physical limit on the precision

of temporal gradient sensing constrains when and where

bacteria can respond to chemical pulses. Using this approach,

we develop a general theory to predict the fundamental length

and time scales over which chemotactic bacteria can respond to

chemical pulses. Because it requires few assumptions about the

underlying mechanisms responsible for chemotactic behaviour,

the theory can be applied to the diverse assemblages of bacteria

that occur in natural marine and freshwater environments.

We first discuss gradient estimation by a cell in a dynamic

chemoattractant field. We then derive theoretical bounds on

the regions of the environment in which bacteria can respond

to gradients and characterize the spatio-temporal evolution

of these regions as a function of physical and biological par-

ameters. Finally, we show that changes in swimming speed

in response to measurements of absolute concentration—a

bacterial behaviour known as chemokinesis [10,17]—can greatly

enhance a cell’s ability to measure gradients in a dynamic

chemoattractant field.

v. (c) In a dynamic concentration field C(x, t), c1 � vgþ @C=@t; g is con-
founded with temporal changes in concentration (@C=@t) and the cell may
perceive a decreasing concentration (red dashed line) although the true
concentration slope is positive. (Online version in colour.)
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2. Model development
2.1. Signal and noise in temporal gradient sensing
Unlike large eukaryotic cells, which can directly measure

spatial gradients in chemical concentration [18], many chemo-

tactic bacteria navigate by measuring temporal changes in

concentration as they swim [19,20]. They use these mea-

surements to detect concentration gradients and to navigate

towards more favourable conditions (towards resources,

away from noxious substances). Regardless of the biochemical

and behavioural mechanisms a cell uses to navigate, gradient-

based navigation can only be as precise as a cell’s estimate of

the gradient itself; downstream transduction will, in general,

only add noise [16]. One can, therefore, establish performance

bounds within which real bacterial cells must operate by

considering physical limits on the accuracy and precision of

gradient sensing by an idealized cell. We begin by considering

gradient detection by such a cell: the perfectly absorbing sphere

originally described by Berg & Purcell [15]. This cell swims

through a dynamic chemoattractant landscape, absorbing all

molecules that reach its surface (figure 1a). In reality, bacteria

absorb some ligands they use for chemotaxis, whereas others

are bound only temporarily. However, absorbing ligand

always leads to more accurate measurement of both absolute

concentration and changes in concentration over time because

molecules cannot be re-bound once they have been absorbed

[13,18]. We therefore assume molecules are absorbed yielding

an upper limit on measurement accuracy [18].

Like the well-studied enteric bacterium Escherichia coli,
marine bacteria perform chemotaxis by altering the length of

relatively straight ‘runs’, which are interspersed with random

re-orientation events (‘tumbles’ for E. coli [21], ‘flicks’ for

marine bacteria [22,23]). As a cell swims, receptors on the

cell’s surface bind chemoattractant molecules and a signal

from the receptors is transduced through a biochemical

network to one or more flagellar motors, which control the

speed and direction of the flagellar rotations that drive loco-

motion. Changes in receptor occupancy alter the probability

that the direction of flagellar rotation will reverse, leading to

a re-orientation [24], and the outcome of this is that bacteria

extend runs when they perceive an increasing concentration
of chemoattractant. A requirement for chemotaxis, therefore,

is that the cell is capable of detecting meaningful changes in

mean concentration [14] over some measurement interval of

length T. This task is complicated by significant stochastic vari-

ation in the times at which molecules arrive at the cell’s surface.

The length of the measurement interval T is bounded above by

the characteristic time scale of stochastic re-orientations (e.g.

rotational diffusion, active re-orientation [15]), which for cells

in the size range of E. coli and many marine bacteria ranges

from hundreds of milliseconds [5] to several seconds [25].

A cell has little to gain by using the history of molecule encoun-

ters that extends beyond this time scale because rotational

diffusion and active stochastic reorientation (e.g. tumbles,

flicks) cause random changes in the cell’s trajectory,

decorrelating the cell’s orientation and rendering old infor-

mation useless to the cell for determining whether it is

currently travelling up or down a chemoattractant gradient

(this issue is discussed in detail in [15]). We therefore assume

that the measurement time scale T is shorter than the time

scale of stochastic reorientation and neglect processes such as

rotational diffusion. For such short T, the chemoattractant

concentration along the swimming cell’s path, c(t), can be line-

arized to cðtÞ � c0 þ c1ðt� t0Þ over the time interval ðt0 � T=2,

t0 þ T=2Þ: The cell experiences this concentration as a noisy

time series of encounters with chemoattractant molecules

(figure 1a), from which it must estimate the concentration

ramp rate, c1, to determine whether concentration is increasing

or decreasing.

Using maximum likelihood, one can show that the optimal

way for a perfectly absorbing sphere of radius a to estimate c1

(concentration� time21) using a sequence of molecule absorp-

tions is, to leading order [13]:

ĉ1 ¼
n
P

iðti � t0Þ
4pDaT

P
iðti � t0Þ2

,

where ĉ1 is the cell’s estimate of the ramp rate, n is the number

of molecules absorbed over the measurement interval, D
is the diffusivity of the chemoattractant and ti is the
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absorption time of the ith molecule. Importantly, ĉ1 has typical

measurement variance no less than:

Varðĉ1Þ ¼
3c0

pDaT3
, ð2:1Þ

where c0 is the true background concentration in the vicinity

of the cell at time t0, and the variance of ĉ1 does not depend

on the true ramp rate c1 as long as c0 � c1T (electronic supple-

mentary material; see also [13, eqn (S44)]). This formulation

assumes that a cell can ‘count’ many molecules in a typical

observation window, which amounts to assuming that the

time scale on which receptors bind chemoattractant molecules

is fast relative to the length of the observation window,

T. Receptor binding kinetics are typically very fast (millisecond

time scales, e.g. [24,26]), so this assumption will generally hold

unless T is extremely short. To summarize, measurements of

concentration involve three time scales that are relevant to

our model formulation, which are naturally separated in che-

motactic bacteria [24]: (1) the time scale of absorptions, which

is typically short (approx. 1 ms [24]), (2) the measurement

window T, which is of intermediate length, and (3) the time

scale of active re-orientations, which must be longer than T if

the bacterium is to perform chemotaxis [15].

Variance in the ramp rate estimate (equation (2.1)) is

solely due to stochastic arrivals of chemoattractant molecules

and does not include additional sources of noise resulting, for

example, from noise in the biochemical network responsible

for ramp rate estimation [16,27]. Equation (2.1) thus provides

a lower bound on uncertainty about the true ramp rate and a

constraint within which real cells must operate, regardless

of the precise biochemical mechanism through which they

implement ramp rate estimation. Below we use equation

(2.1) to define the regions of space where it is possible

for cells to use measurements of concentration to climb

chemoattractant gradients. Outside these regions, cells may

attempt to perform chemotaxis; however, we will show

that, for several ecologically relevant types of pulses, the

signal-to-noise ratio (SNR) of a cell’s estimate of the concen-

tration slope decays sharply (like a Gaussian) far from the

origin of a chemoattractant pulse. This strong decrease in

the SNR with increasing distance implies that chemotactic

cells far from the origin of a pulse will be responding primar-

ily to noise and will not exhibit biased motion.
2.2. Gradient estimation in a time-varying environment
For a cell swimming at speed v, the instantaneous local

slope of the concentration profile along the cell’s path, which

we will refer to as the concentration slope g, is given by

g ¼ rCðxÞ � v=v, where v is the cell’s velocity. The concen-

tration slope is the quantity that is useful for climbing

gradients, for example, by providing a signal for cells to

lengthen runs in run-and-tumble chemotaxis [21]; however, a

cell the size of a bacterium (approx. 1 mm) cannot measure g
directly [13]. It must instead infer g from its estimate of the

ramp rate ĉ1: In a time-invariant concentration field c1 ¼ gv,

and the maximum-likelihood estimator of g is proportional

to the ramp rate estimator: ĝ ¼ ĉ1=v (figure 1b; electronic

supplementary material).

In a time-varying environment, the concentration that a

swimming cell experiences, cðtÞ � c0 þ ðvgþ @C=@tÞðt� t0Þ,
is influenced by local temporal changes in concentration,

@C=@t (figure 1c); the ramp rate is given by c1 ¼ vgþ @C=@t:
In this case, the time series of molecule absorptions does

not contain the information needed to estimate both g and

@C=@t, and any estimator the cell uses to measure the concen-

tration slope g will be biased (electronic supplementary

material). For example, estimating g as ĝ ¼ ĉ1=v means that

ĝ! gþ ð@C=@tÞ=v in the limit of many molecule absorptions.

Correcting this bias would require that the cell has an

independent estimate of @C=@t: In the absence of such an esti-

mate, the cell can reduce bias by travelling faster, but not by

increasing the length of its measurement window T (electronic

supplementary material). This highlights an important connec-

tion between swimming speed and measurement accuracy that

we explore in more detail below. Bias in the concentration slope

estimate becomes important far from the origin of a pulse,

where cells can perceive an increasing concentration even if

they are travelling down the concentration gradient, and near

the origin, where cells can perceive a falling concentration

even if they are travelling up a gradient (figure 1c).
2.3. Conditions for chemotaxis and responses
to chemical pulses

If a cell is to use measurements of ramp rate to climb a con-

centration gradient, two conditions must be met. First, the

cell must be in a region of the environment where typical

values of the perceived ramp rate exceed noise: i.e. the SNR

of the ramp rate estimator, jc1jVarðĉ1Þ�1=2 � d0, where d0 is

a constant threshold on the SNR (electronic supplementary

material). Second, the ramp rate c1 ¼ vgþ @C=@t and the

concentration slope g must have the same sign. Applying

equation (2.1) and rearranging, these conditions are:

jvgþ ð@C=@tÞjffiffiffiffi
c0
p � d :¼ d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

pDaT3

r
,

and signðc1Þ ¼ signðgÞ:

9>=
>; ð2:2Þ

For a chemoattractant field with concentration C(x, t),
conditions (2.2) define the regions where cells can reliably

determine the sign of the concentration slope, a requirement

for gradient-based navigation.

Using conditions (2.2), we explore how bacteria perceive

three types of pulses that occur in natural environments:

pulses that arise from surfaces, pulses that arise as thin chemi-

cal filaments and pulses created by small point releases.

Localized point pulses are created by many natural sources,

including the lysis of small cells and excretions by larger organ-

isms [4,5]. Thin chemical filaments and sheets occur when

turbulence stirs dissolved chemicals. The distribution of

chemicals is stretched and folded into sheets and filaments at

length scales down to the Batchelor scale [4]. Mixing below

the Batchelor scale is dominated by diffusion. This length

scale is lB ¼ ðcD2=eÞ1=4, where c is kinematic viscosity and e

is the turbulent dissipation rate. As e changes, lB changes

slowly, implying that small point pulses and filaments or

sheets spread primarily by diffusion across a broad range of

flows. Across a range of realistic levels of turbulence (e �10�9

to 1026 W kg21 [28]) the average shear rate is of order 1023 to

1 s21. Except for the highest values in this range, these

shear rates are typically too low to cause significant re-

orientation of bacteria as they swim [29]. We therefore focus

on the regime in which the effects of flow on bacterial re-orien-

tation can be neglected for the length scales considered here.

http://rsif.royalsocietypublishing.org/


20

C
(r

, t
)

424
rori

10001200800400
distance from origin r (µm)

0
0

0.5

1.0

d0

re
la

tiv
e

bi
as

si
gn

al
-t

o-
no

is
e 

ra
tio

(n
or

m
al

iz
ed

 c
on

ce
nt

ra
tio

n)

r (µm)

C
(r

, t
)

C
(r

, t
)

(a)
(b)
(i)

(ii)

(iii)(c)

Figure 2. Gradient estimation in a dynamic environment. (a) Solid orange curve
shows the true concentration profile at t ¼ t0. Solid green unimodal curve shows
the SNR of ĉ1 a cell would experience if this concentration profile were static.
Dotted red curve shows the SNR for a cell swimming directly towards the
origin of the pulse. Dash-dot blue curve shows the SNR for a cell swimming
directly away from the origin of the pulse. Concentration and SNR normalized
to a maximum value of one. (b) Square root of concentrationð

ffiffiffiffiffiffiffiffiffiffiffi
Cðr, tÞ

p
Þ at

t ¼ t0 (solid orange line) and individual estimates of this concentrationffiffiffiffiffiffiffi
cðtÞ

p
, semi-transparent grey; mean of estimates shown by dashed red line)

made by a cell swimming towards the pulse origin. Each individual estimate
is computed by calculating ĉ0 and ĉ1 (see the electronic supplementary mate-
rial for equations) from a time series of random Poisson molecule arrivals [30]
with an arrival rate given by the true instantaneous concentration at the
bacterium’s position C(x, t). (c) Relative bias of concentration slope estimate
j@C=@tj=½jvgj þ j@C=@tj�ð Þ measured by slow (solid curve; v ¼

30 mm s21) and fast swimming cells (dotted curve; v¼ 96 mm s21). In all
panels, the concentration is governed by equation (2.3) with N ¼ 3, M ¼ 1011

molecules, v¼ 30 mm s21, a¼ 1 mm, T¼ 0.1 s, t0 ¼ 45 s and d0 ¼ 1.
Pulse sizes in all figures correspond roughly to the quantity of free amino
acids released from a lysed phytoplankton cell of approximately 10 mm in
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To illustrate the utility of our theory, we consider how

bacteria respond to chemical point pulses, filaments and

sheets. These canonical geometries can be viewed as basic

components of more complex chemical landscapes at larger

scales (e.g. the types of landscapes considered in [1]). Extend-

ing our results to alternative geometries follows from

straightforward calculations. At time t ¼ 0, a single pulse

appears with planar (N ¼ 1, sheet), cylindrical (N ¼ 2, fila-

ment) or spherical (N ¼ 3, point pulse) symmetry. The size

of the pulse is M (molecules per unit area of sheet [N ¼ 1],

per unit filament length [N ¼ 2] or per individual point

pulse [N ¼ 3]). The three-dimensional chemoattractant field

C is governed by @C=@t ¼ DDC and the concentration is:

Cðr, t, NÞ ¼ M

ð4pDtÞN=2
e�r2=4Dt, ð2:3Þ

where D (mm2 s21) is diffusivity, r (mm) is the distance from

the surface (N ¼ 1), filament axis (N ¼ 2) or centre of the

point source (N ¼ 3). A cell moving in this chemoattractant

field with velocity v (mm s21) will experience a typical rate

of change in concentration of c1 � rC � vþ @C=@t:
For chemoattractant pulses with concentration described

by equation (2.3) (figure 2a, solid orange curve), the SNR

(figure 2a, unimodal solid green curve) divides the domain

surrounding a pulse into three regions. Far from the pulse,

the concentration gradient is shallow and the absolute con-

centration is low: cells cannot accurately measure changes

in concentration because they encounter few molecules

during a typical observation window (figure 2b(iii)). At an

intermediate distance from the pulse origin, the gradient is

largest in magnitude and cells encounter many molecules

during a typical observation window: the SNR is greatest in

this region (figure 2b(ii)). Near the pulse origin the gradient

is again shallow and variance in the concentration slope

estimate is substantial (figure 2b(i)). Moreover, in this

region, concentration changes rapidly over time and the con-

centration slope and ramp rate may differ in sign (i.e. bias in

the concentration slope estimate is large, figure 2b(i),c).

diameter [5]. (Online version in colour.)
3. Results
Cells far from a chemoattractant pulse cannot resolve true

changes in concentration above noise (figure 2a, SNR drops

below threshold d0 for large distance). The distance beyond

which ĉ1 becomes dominated by noise is given implicitly by

d ¼ vgðr, tÞ þ @Cðr, tÞ
@t

����
����Cðr, tÞ�1=2, ð3:1Þ

where the term in brackets is the magnitude of the true ramp

rate c1 that a cell at distance r with local concentration slope

g(r, t) experiences. Because the chemoattractant field is chan-

ging, the magnitude of the ramp rate a cell measures will

depend on its direction of travel. Far from the pulse, a cell

travelling directly inward (figure 2a, red dotted curve) will

experience a greater SNR than a cell travelling outward

(figure 2a, blue dot-dash curve). Beyond the inflection point

in the concentration profile, the r.h.s. of equation (3.1) is

maximized for cells travelling directly up the concentration

gradient (i.e. towards the pulse centre; figure 2a, red dotted

curve). When the SNR threshold, d0, is of order one or smal-

ler, the outer boundary beyond which cells cannot reliably

perceive changes in concentration is given implicitly by
equation (3.1) with g ¼ �@C=@r: We refer to the largest dis-

tance that satisfies this equation as the outer boundary of

sensitivity, ro (figure 2a, red point). At distances r . ro,

perceived changes in concentration are dominated by noise,

regardless of a cell’s direction of travel.

Bacteria use gradients to navigate towards regions of high

attractant concentration, but also to maintain position near

local maxima [12]. In order to do this, a cell travelling down

the concentration gradient must experience a decreasing

concentration, which provides the signal the cell uses to

modify swimming behaviour [23]. Near the origin, the SNR

is maximized for a cell that is travelling directly down the con-

centration gradient (figure 2a, blue dash-dot curve). For t
greater than a critical time, ts, there is an inner boundary at a

distance ri from the origin of the pulse (figure 2a, blue point),

within which the SNR drops below threshold. For t . ts, the

location of this inner boundary is given implicitly by equation

(3.1) with g ¼ @C=@r (electronic supplementary material).

The boundaries ro and ri define a dynamic region (figure 3,

blue annular region in inset), outside of which bacteria cannot

reliably respond to chemoattractant gradients because either

the ramp rate is too noisy to resolve or the ramp rate and the

http://rsif.royalsocietypublishing.org/
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concentration slope have different signs (i.e. conditions (2.2)

are violated). Figure 3 shows the dynamics of ro and ri for

bacteria swimming at three different speeds. For all swimming

speeds, the outer boundary ro initially expands before rapidly

contracting (figure 3, red dash, dot and dash-dot curves). The

time dependence of this boundary can be obtained by substi-

tuting equation (2.3) into equation (3.1), solving for ro, and

expanding the resulting product-log solution (electronic

supplementary material):

ro �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dt log

� logðkt1þN=2Þ
kt1þN=2

� �s
, ð3:2Þ

where k ¼ ð4pDÞN=2
d2

0=ð2paMv2T3Þ: Swimming speeds of

motile bacteria typically range from 30 mm s21 to over

100 mm s21 [10]. For many relevant chemoattractants, D �
103 mm2 s21, and the number of molecules released in a

pulse, M, is generally large; for example, a point pulse created

by the lysis of even a small phytoplankton cell (a common

source of nutrients for marine bacteria) contains upwards of

1011 free amino acid molecules [5]. This means that k	 1

such that the logarithmic term in equation (4.2) varies slowly

with time for early times, and leading-order behaviour is

initially governed by
ffiffi
t
p
: Pulse size, M, occurs only inside the

logarithmic terms in equation (4.2), indicating that ro scales

weakly with pulse size. For example, doubling the size of a

small point pulse (N¼ 3) increases the volume of water in

which gradients are perceived byonly 50% (assuming M increases

from 1011 to 2� 1011 molecules, d0¼ 1, and v¼ 66 mm s21).
Figure 4 shows the dynamics of ro for surface, filament and

point pulses. Equation (3.2) agrees well with the exact solution

for ro obtained by solving equation (3.1) numerically (figure 4,

compare solid and dashed curves).

Eventually the inner and outer boundaries of sensitivity

intersect (figure 3), and cells can no longer reliably glean

navigational information from the chemoattractant field.

We refer to the time at which this occurs as t*. Finding the

time when the SNR falls below threshold d0 everywhere

shows that

t
 � aðMv2T3Þ2=ðNþ2Þ, ð3:3Þ

where a ¼ ðpð1�N=2Þae�1Þ2=ðNþ2Þ½3ð4DÞN=2
d0��2=ðNþ2Þ and the

approximation assumes jvgj � @C=@t at the point in space

where the SNR is maximized (electronic supplementary

material). This relation illustrates the relative contribution of

measurement time T and speed v to the time scale of percep-

tible changes in concentration, t*. Moreover, equation (3.3)

shows that t* is proportional to M2/(N þ 2); the scaling of t*
with pulse size is sublinear for all pulse geometries, meaning

that doubling the size of a pulse always less than doubles the

time over which it can be perceived.

The locations of inner and outer boundaries (figure 3) are

governed, in part, by swimming speed. Many bacteria alter

swimming speed in response to stimuli, and a natural question,

therefore, is whether a cell could adjust its speed adaptively to

achieve high sensitivity to chemical gradients. Some species

exhibit a behaviour known as chemokinesis: cells swim at a

speed that depends on the local concentration of chemo-

attractant, often swimming at a high speed when absolute

concentration is high, and a low speed when concentration is

low [10,17]. In the presence of a resolvable gradient, the

interpretation of chemokinesis is straightforward: cells can

climb the gradient faster if they swim at a higher speed (at

the expense of a higher energetic cost of motility). However,

http://rsif.royalsocietypublishing.org/
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chemokinesis may also have a second role. The SNR of the

ramp rate is smaller than the SNR of the absolute concen-

tration, c0, implying that cells may be able to accurately

detect whether absolute concentration has crossed a threshold

before they can resolve changes in concentration over time.

The mean rate of arrival of molecules to the surface of a

sphere of radius a is 4pDacðtÞ [15]. Poisson molecule arri-

vals imply that the SNR of absolute concentration c0 is

c0Varðĉ0Þ�1=2 ¼ c0½4pDaTc0��1=2: Using this ratio, we define a

third boundary, rc, beyond which the SNR of ĉ0 falls below

the threshold, d0:

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Dt logðht�N=2Þ

q
, ð3:4Þ

where h ¼ d�1
0 ðMaTÞ1=2ð4pDÞ1=2�N=4: This boundary has the

same leading-order behaviour in time as ro, but extends well

beyond ro (figure 3, outer solid grey curve); for example,

assuming ro is at its maximum value (figure 3), the volume

within which cells can accurately measure absolute concen-

tration in the water surrounding a small point pulse (N ¼ 3)

is six times larger than the volume in which cells can resolve

changes in concentration (assuming M ¼ 1011 molecules [5],

d0 ¼ 1, v ¼ 66 mm s21). Note that we use the same threshold

(d0) on the SNR of ĉ0 and ĉ1 for the purpose of comparison

but thresholds on these ratios need not be equal.

By increasing their swimming speeds when concentration

exceeds a threshold, cells can increase their sensitivity to

changes in concentration (first condition (2.2); figure 3)

and reduce bias in estimation of the concentration slope

(figure 2c). The effect of increasing swimming speed is to

expand the region of space over which the cell can resolve

gradients, ri , r , ro, and to extend the time t* beyond which

gradients become too noisy for the cell to measure (figure 3,

compare curves for different swimming speeds; figure 5).

The effects of changes in speed may be substantial. For

example, the coral pathogen Vibrio coralliilyticus increases

its speed by as much as 45% when chemoattractant

concentration is high [17]. The temporal evolution of a chemo-

attractant pulse appears very different to a bacterium

swimming at 66 mm s21 (typical cruising speed of V. coralliily-
ticus and other Vibrio spp.; figure 5, blue regions) than it does
to a bacterium travelling at speeds closer to 100 mm s21 (swim-

ming speeds of chemokinetic V. coralliilyticus [10,17]; figure 5,

orange regions).
4. Discussion
Bacteria must cope with considerable noise and estimation bias

when navigating dynamic chemical landscapes. The advan-

tage conferred by an early response to chemical pulses

suggests that there may be selection for high accuracy and

sensitivity in the chemotaxis response [1,4]. Our framework

provides a means of studying how the basic components of

bacterial navigation strategies (swimming speed, measurement

time) and physical parameters (e.g. chemoattractant diffusiv-

ity, pulse size) influence when and where bacteria can

perform chemotaxis. Expressions for the outer boundary of

sensitivity, ro (equation (3.2)), and the time after which gradi-

ents created by a pulse are no longer perceptible, t* (equation

(3.3)), may prove particularly useful as they constrain the

length and time scales over which bacteria can perceive indi-

vidual chemical pulses. The relationship between the size of

the pulse, pulse geometry, and the length and time scales

over which the pulse is perceptible provides a basis for model-

ling more realistic environments where many pulses appear

with characteristic sizes, geometries and temporal statistics.

For example, an empirical estimate of a typical inter-pulse

interval in, say, a marine environment [4] can be compared

with t* to determine whether the environment is highly granu-

lar or relatively homogeneous from the perspective of bacteria.

For the canonical pulse geometries considered here (equation

(2.3)), the SNR of the concentration ramp rate decays sharply

far from the origin of a pulse (figure 2a). In particular, substitut-

ing equation (2.3) into the expression for the SNR of ĉ1 (r.h.s. of

equation (3.1)) shows that the SNR decays like a Gaussian for

large r (SNR/ exp½�r2=ð8DtÞ� for large r). This sharp tran-

sition in the SNR means that, near the outer boundary of

sensitivity, there is a stark division between cells that have

access to useful chemotactic information (r , ro) and cells

that do not (r . ro). Using ro to partition bacterial cells into

subpopulations that are near and far from chemical pulses
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could greatly simplify models of bacterial competition and

population dynamics in complex environments [1].

Our theory makes a number of predictions that could be

tested with chemotaxis experiments. First, the theory predicts

that, for times t , t*, the mean orientation of bacterial swim-

ming trajectories outside the region ri , r , ro should be

unbiased. Because the conditions considered in this work cor-

respond to an upper bound on sensory accuracy, the region

within which cells exhibit biased motion may be a sub-

region of ri , r , ro. A second prediction is that, for times

greater than t*, bacteria should not exhibit biased motion

anywhere in the environment because each cell’s estimate

of the gradient will be dominated by noise, regardless of

where it is located relative to the origin of the pulse. Again,

because of the assumptions used to derive t*, the observed

time at which the average directional bias of a bacterial

population drops to zero may be shorter than t*.

One of the implications of our model for temporal gradi-

ent sensing is that sensory acuity is intimately linked to

swimming speed (equation (3.1), figure 5). Because swim-

ming at high speed is costly [1,15], bacteria are likely to

benefit by changing speed in an adaptive way, cruising at

low speed in the absence of a chemical signal and speeding

up when concentration exceeds a threshold. The connection

between speed and measurement accuracy may explain the

counterintuitive observation that some species of marine bac-

teria swim at high speeds even near local maxima in

chemoattractant concentration [10]; bias in the concentration

slope estimate is high near local maxima (figure 2b,c).

A cell cannot decrease bias by lengthening measurement

time, but it can reduce bias by swimming faster, suggesting

that bacteria may use chemokinesis to enhance chemotactic
accuracy near the blind spot that forms at the centre of

spreading chemical pulses (figure 5, t ¼ 120, 140 s; electronic

supplementary material). More generally, our framework

suggests that bacteria can improve chemotactic performance

by using chemokinesis and chemotaxis in concert. The

hypothesis that bacteria initiate chemokinesis in response to

absolute concentration to enhance sensitivity to gradients

could be investigated by independently varying the

concentration gradient and absolute concentration of a

chemoattractant, for example using a microfluidic device [31].

Our framework uses fundamental limits on the accuracy

of chemical sensing [13,16] to determine when and where

chemotaxis is feasible, and provides a tool for modelling

bacterial behaviour in more realistic dynamic environ-

ments. Importantly, it is agnostic to the details of bacterial

movement patterns and chemosensory machinery and can

therefore provide general principles that apply to the broad

range of bacterial species in real ecological communities

that navigate using temporal gradient sensing.
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