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Abstract— Many species of bacteria are motile, but they
use different random strategies to determine where to swim
in response to chemical gradients. We extend past work
describing a chemotactic E. coli cell as an ergodic, stochastic
hybrid system to model a variety of different strategies. We
quantify differences in asymptotic performance and show that
the processes described by our models converge to stationary
distributions that are proportional to various powers of the
distribution of chemicals in the environment. Our main goal
is to understand the implications of the differences between E.
coli’s chemotaxis strategy and the more complicated strategy of
the marine bacterium Vibrio alginolyticus, which, unlike E. coli,
can swim both forward and backward. We argue that Vibrio’s
ability to reverse allows it to accumulate more tightly around
nutrient sources, and we quantify the effects that reversals
have on the stationary distribution of various processes. Our
results provide intuition for designing minimalistic multi-agent
robotic systems that are better suited for source-seeking tasks
in particular environments.

I. INTRODUCTION

Bacterial chemotaxis is the process in which motile bac-
teria, such as E. coli, bias their swimming in response to
gradients of chemical concentrations. An E. coli cell’s ability
to follow gradients is severely limited by its tiny size. Only
about two microns long, the cell is jostled about by the Brow-
nian motion of the water molecules and, therefore, cannot
swim straight. “After about 10 seconds, it drifts off course by
more than 90 degrees, and thus forgets where it is going” [1].
Yet, populations of E. coli cells use temporal measurements
of the environment to successfully distribute themselves in
accordance to distributions of nutrient concentrations.

Many engineers have been inspired by E. coli’s simple yet
elegant chemotactic strategy. (For examples, see [2], [3], and
references therein.) In [4], Mesquita modeled a chemotactic
cell as a stochastic hybrid system, as formulated in [5], and
showed that, without using any communication or knowledge
of position, a population of identical, independently-acting
chemotactic agents converges to the ideal free distribution.
This is the distribution that is proportional to the distribution
of the chemicals. Thus, it is ‘ideal’ because, in the case in
which the chemicals are nutrients, it is the distribution in
which each agent has an equal share of the nutrients [6].

The key to the success of E. coli’s chemotactic strategy
is its stochastic nature. In this strategy, a cell ‘runs’ forward
with exponentially distributed run times and then ‘tumbles’
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Fig. 1. Trajectories of three simulated cells following the gradient
of a Gaussian-distributed nutrient patch. The three cells have identical
parameters, imitating a run-and-tumble strategy. The yellow dot marks their
shared initial position, while the other dots mark their final positions.

to reorient itself. It chooses a new orientation with almost
uniform probability before starting a new run. If the envi-
ronment is isotropic, the cell’s behavior is that of a simple
random walk. But, when the cell senses an uphill gradient of
nutrient concentrations, it modifies its run time by decreasing
the probability of tumbling. This makes it more likely that
the cell will continue to swim towards higher concentrations
of nutrients. However, as this strategy is probabilistic, a cell
will still often swim down gradient, as seen in Figure 1.

The stochasticity of this ‘run-and-tumble’ control strategy
has very important implications. In [4], Mesquita used the
theory developed by Davis in [7] and Jacobsen in [8] to
show that this process is a so-called “piecewise deterministic
Markov process.” Because the system can be described as a
continuous Markov process, Mesquita used stochastic sta-
bility theory, as developed by Meyn and Tweedie in [9] and
[10], to prove that the process is ergodic and, thus, converges
to a unique stationary distribution. Therefore, by the pathwise
ergodic theorem [11], we can sample the position of the
process at uniform time intervals to estimate the stationary
distribution of the process. And because this process con-
verges to the ideal free distribution, we can use the position
measurements over time of a population of agents to learn the
distribution of chemicals in an environment. This stochastic
strategy is advantageous because its ergodicity does not allow
the system to become trapped at local maxima. Instead, the
distribution of the agents will ultimately reflect the relative
magnitudes of all chemical sources. Also, because of its
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simplicity, this source-seeking strategy can be achieved using
a multi-agent system comprised of very cheap, minimalistic
robots.

In this paper, we extend Mesquita’s results in light of new
experimental results on the marine bacterium Vibrio algi-
nolyticus. Vibrio uses a chemotaxis strategy quite different
from that of E. coli. Experimentalists have observed that a
population of Vibrio cells, although swimming much faster
than E. coli cells, accumulates much more tightly around
nutrient patches [12]. We argue that this tighter accumulation
occurs because, unlike E. coli, Vibrio can swim in reverse.
While the E. coli motility strategy is comprised of two
steps—a run and a reorientation, the Vibrio strategy adds
a third step: a reversal in between its run and reorienta-
tion steps. In what has been called its “reverse-and-flick”
swimming pattern, a Vibrio cell swims in some direction for
some random amount of time, then reverses and backtracks
for another random time interval, and then ‘flicks’ by 90
degrees on average before again swimming forward [13].

Vibrio’s environment, the ocean, is a much harsher en-
vironment than E. coli’s regular environment within the
gut. In the ocean, nutrients are sparse, and the turbulence
of the waves cause them to dissipate quickly [14], [15].
How does Vibrio’s chemotactic strategy reflect these environ-
mental differences? Can Vibrio’s strategy teach us anything
about optimizing, or at least improving, stochastic source-
seeking strategies for specific environments? Our goal is
to characterize differences in the performance of various
bacterial motility strategies to gain intuition about why
particular species, living in particular environments, have
evolved certain chemotactic strategies. Once gained, these
insights can be used to engineer minimalistic, source-seeking
systems that are better suited for specific environments.

In this paper, we present results from [16]. We generalize
Mesquita’s model of two-step, run-and-tumble processes to
assess the effect of biases in reorientation. In our gener-
alization, the sequence of orientation states is no longer
memoryless. We show that all two-step strategies described
by our model converge to distributions proportional to qn(x),
for some n > 0, where q(x) is the amount of nutrients at
location x. We show that, without changing the sensitivity
of the sensing process, we can modify the value of n by
a factor in the interval (0, 2) by biasing the reorientation
angles chosen during each tumble to favor either reversing
or continuing forward. This analysis shows that favoring
reversing increases the value of n by at most a factor of two.
This provides insight for the expected performance of more
complicated three-step, run-reverse-flick processes. Although
we do not have an analytical solution for the stationary
distribution of a general three-step process, we do solve for
the stationary distribution of a simplified three-step process
in a particular environment. In this scenario, the three-step
process does achieve the accumulation factor of two. We
also provide a few simulation results of general three-step
processes, which suggest that a run-reverse-flick strategy
may be more robust to noise and system inaccuracies.

II. MODEL

To model various chemotactic strategies, we extend the
hybrid system model given in [4].

State space: Restricting our analysis to the two-
dimensional Cartesian plane, we consider a process with
position x ∈ X , a compact set of R2, and orientation v ∈ S,
the unit circle: S = {v ∈ R2 : ‖v‖2 = 1}. We take l to be the
normalized two-dimensional Lebesgue measure on X and ν
to be the normalized one-dimensional Lebesgue measure on
S. Thus, l(X) = 1, supp l = X , ν(S) = 1, and supp ν = S,
so, if p(x, v, t) is the probability that the process is at location
x with velocity v at time t,

∫
X×S p(x, v, t)l(dx)ν(dv) = 1.

The two-step process has state (x, v) ∈ X ×M2, where
M2 := S. The three-step process has state (x, d, v) ∈ X ×
M3, where M3 := {−1,+1} × S. The direction d is needed
to keep track of whether the process is moving forward, d =
+1, or reversing, d = −1. We consider a general two- or
three-step process to have state (x,m) ∈ X ×M, where M
is equal to either M2 or M3.

Flow: The process has continuous dynamics and is
piecewise-linear. Thus, when the two-step or three-step pro-
cess has orientation v, it flows according to

dx

dt
= f(x, v) = f(v) = v . (1)

We thus assume unit speed. Notice that, for all x,∫
S f(x, v)ν(dv) = 0. Thus, unconditioned on measurements

or initial position, a process is equally likely to have any
orientation v and can explore its environment by moving in
any direction with equal probability. This allows us to prove
that the process is ergodic.

Jump rate: To allow direct comparison, we assume that
Vibrio-like strategies share the same jump rate characteristics
with E. coli. Thus, we assume that both two-step and three-
step processes have exponentially distributed run times with
parameter λ(x,m). Thus, the conditional probability that no
jump occurs between time t1 and t2 given that the process
is at position x(t1) and orientation v(t1) at time t1 is

exp
(
−
∫ t2

t1

λ(ϕt2−t1(x(t1), v(t1)), v(t1))dτ
)

,

where ϕt(x, v) = x+vt ∈ R2 is the location of the cell after
time t when moving with velocity v from initial position x.

We assume that the jump rate parameter depends on the
state of the process according to the equation

λ(x,m) = a
(
M(t)− f(x,m) · ∇x ln q(x)

)
, (2)

where a > 0 and M(t) ensures that the jump rate is positive.
We can either take M(t) = M sufficiently large or, for a
more efficient policy, update M(t) online, as described in
[4]. Notice that it is only in the jump rate that measurements
of the environment are used; the system performs chemotaxis
only by modifying the probability distribution of run times.
Because we assume that the system measures the gradient
of the logarithm of the nutrient distribution, it exhibits fold
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change detection [17], [18]. That is, it responds only to
relative changes and thus modifies its response not according
to the absolute amplitude of the nutrient source but according
to the spatial distribution of the source.

Transition probability: When the process jumps, the new
orientation state m depends only on the current orientation
state m′. There are no instantaneous jumps in position, x.

For two-step processes, as we are interested in understand-
ing the effects of forward persistence and reversals in motility
strategies, we analyze probability density functions of the
following form:

T (v, v′) = bF δ(v − v′) + bRδ(v + v′) + 1− bF − bR , (3)

where δ(·) is the Dirac delta function, bF is the forward bias,
bR is the backward bias, bF , bR ∈ [0, 1) and bF + bR ≤ 1.

For three-step processes, we will analyze probability den-
sity functions of a few different forms. However, as a simple,
base case, we assume that with probability of flicking pF the
process chooses with uniform probability a new orientation
and with probability 1− pF keeps it same orientation:

T [(d, v), (d′, v′)] (4)

=

 0 if d = d′;
δ(v + v′) if d = −1, d′ = +1;
pF + (1− pF )δ(v + v′) if d = +1, d′ = −1 .

This form is inspired by experimental results in [19] that
showed that a Vibrio cell’s swimming speed affects the
probability that it will reorient after a reversal.

III. CONVERGENCE OF TWO- AND THREE-STEP
PROCESSES

In [4], Mesquita proved the ergodicity of two-step pro-
cesses. By showing that the Markov process is Harris re-
current, it immediately follows that the process converges to
a unique stationary distribution [20]. We can use the same
approach to show ergodicity of a three-step process.

Proposition 1: Each two- and three-step process that can
be described by our model is ergodic and thus converges to
a unique stationary distribution.

Proof: The ergodicity of two-step processes is shown
in [4]. We can use this same analysis to show the ergodicity
of a three-step process. Although the transition probability
of a three-step process requires that the process alternate its
direction, d, at each jump, the process is irreducible because
the jump rate ensures that there is a positive probability that
a jump will occur within any positive time interval and the
process can jump to any velocity v ∈ S within two jumps.
Harris recurrence thus follows, as shown in [16].

Given that a process has a unique stationary distribution,
we can determine what that stationary distribution is by
finding the form of the differential equation that describes
the evolution of the process and solving that equation with
ps(x,m, t) = ps(x,m), so that ∂ps(x,m, t)/∂t = 0.
Mesquita used the analysis presented in [21] to show that
the transport equation given in [22] is indeed the master
equation ([23]) describing the evolution of the probability

density function of the process, p(x,m, t). Using this same
analysis, we can immediately determine that the same equa-
tion describes both our two- and three-step processes.

Proposition 2: A function p(x,m, t) is a probability den-
sity function of a two- or three-step process as described
by our model if it satisfies the following Fokker-Planck-
Kolmogorov (FPK) evolution equation:

∂p(x,m, t)

∂t
= −∇x · [f(x,m)p(x,m, t)] (5)

− λ(x,m)p(x,m, t)

+

∫
M
T (m,m′)λ(x,m′)p(x,m′, t)ν(dm′) .

The first term of this FPK equation is a drift term describing
the continuous motion of the process in the position state
space, X; the second term is a jump term describing the
density of jumps leaving the state (x,m) at time t; and the
final term is another jump term describing the density of
jumps from any other state (x,m′) to the state (x,m).

IV. STATIONARY DISTRIBUTION OF TWO-STEP
PROCESSES

As shown in [4], we can use Equation (5) directly to solve
for the stationary distribution of two-step processes.

Theorem 1: The stationary distribution of a two-step pro-
cess described by our model in an environment with nutrient
distribution q(x) is

ps(x, v) = ps(x) ∝ q(x)a(1+bR−bF ) (6)
Proof: By Proposition 1, the stationary distribution is

unique, so we can guess a solution. Plugging the parameter
values into Equation 5 with p(x, v, t) = ps(x), we use the
facts that

∫
S f(v

′)ν(dv′) = 0 and f(v) = −f(−v) to obtain
the requirement

0 = f(v) · [−∇xps(x) + aps(x)(1 + bR − bF )∇x ln q(x)] .

This holds when ∇x ln ps(x) = a(1 + bR − bF )∇x ln q(x).

Alternatively, we can use Equation 5 to see that many
different strategies result in the same stationary distribution.
Taking λ(x, v) as above, we now solve for functions T (·, ·)
that give a stationary distribution of ps(x) = qn(x), where
n > 0. From the FPK equation, the requirement is that:

(n− a)qa−1(x)∇xq(x) · f(v) +M =∫
S
T (v, v′)[M − aqa−1(x)∇xq(x) · f(v′)]ν(dv′) .

This is satisfied when the following two equations hold:∫
S
T (v, v′)ν(dv′) = 1, (7)

∫
S
T (v, v′)f(v′)ν(dv′) =

a− n
a

f(v) . (8)

Our generalization of two-step processes has retained
many of the nice features seen in [4]; their stationary
distributions are independent of both the orientation state,
v, and the jump rate constant, M .
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Theorem 1 shows that, as the reverse bias bR increases,
the process will accumulate more tightly around a chemical
source, and, as the forward bias bF increases, the process
will further spread out. If either bR or bF equals one, the
process is trapped on a one-dimensional manifold of the
space X and cannot achieve the stationary distribution. Thus,
modifying the values of bR and bF can at most change the
accumulation factor by a factor of b ∈ (0, 2). With a much
simpler mathematical model and derivation, we thus recover
a result from [24].

The stationary distribution given in Equation 6 suggests
that we can achieve any accumulation factor by scaling
the parameter a in the jump rate; this is what is done in
[4]. However, increasing a requires greater sensitivity in
sensing, as it forces the agent to measure larger exponents
of the chemical concentrations. Biasing the reorientation
mechanism thus provides us with an alternative method
for achieving tighter accumulations without requiring more
sophisticated sensors.

V. STATIONARY DISTRIBUTION OF THREE-STEP
PROCESSES?

Because the stationary distribution of a two-step process
is independent of the orientation state, we could easily use
the FPK equation to determine its value. However, this
is unfortunately not the case for three-step processes. A
new complication emerges because, with the extra step, the
stationary distribution of a three-step process must simulta-
neously satisfy two FPK equations.

Let us assume the form of T (·, ·) given in the model and
that the probability of flicking, pF , is one. When the process
is in reverse, in state (x,−1, v), the FPK equation requires
that, if ps is a stationary distribution, then

0 = −f(v) · ∇xps(x,−1, v) (9)
+ M [ps(x,+1,−v)− ps(x,−1, v)]

+ f(v) · ∇xq(x)
q(x)

[ps(x,−1, v) + ps(x,+1,−v)] .

On the other hand, when the process is going forward, in
state (x,+1, v), the FPK equation requires:

0 = −f(v) · ∇xps(x,+1, v) (10)

+ M
[ ∫

S
ps(x,−1, v′)ν(dv′)− ps(x,+1, v)

]
+
∇xq(x)
q(x)

·
[
ps(x,+1, v)f(v)

−
∫
S
f(v′)ps(x,−1, v′)ν(dv′)

]
.

If the stationary distribution were independent of the
orientation state, i.e., ps(x,m) = ps(x), then Equation 9
requires that ps(x) ∝ q2(x), while Equation 10 requires that
ps(x) ∝ q(x). Thus, the stationary distribution of three-step
processes depends on the orientation state.

Furthermore, to cancel out the jump rate constant M in
both equations, we must have that both

1) ps(x,+1, v) = ps(x,−1,−v) for all x ∈ X and v ∈ S,
and

2) ps(x,+1, v) =
∫
S ps(x,−1, v

′)ν(dv′) for all x ∈ X
and v ∈ S.

These two conditions only hold when ps is independent of
orientation state m. Thus, the stationary distribution of a
three-step process also depends on the jump rate constant.

A. A simplified three-step process

Because of these added complications, an analytical so-
lution for the stationary distribution of a three-step process
based on the FPK is not available at this time for general
environments. However, to provide some intuition for how
the stationary distribution of a three-step process depends
on its orientation state and jump rate constant, here we de-
termine the stationary distribution of a very simplified three-
step process in a particular (though, unfortunately, unnatural)
environment. The form of the environment allows us to
guess that the stationary distribution is of form ps(x,m) =
α(x)β(m). To make solving for β easier, we use a very
simplified orientation state space, in which now the process’s
orientation must be one of the four cardinal directions.

In this simplified three-step process:

1) The state is (x, d, θ) ∈ R2×{−1,+1}×{0, π2 , π,
3π
2 }.

2) The continuous dynamics is described by the flow,

ẋ = f(x, d, θ) = f(θ) =

[
cos θ
sin θ

]
.

3) The jump intensity rate is as before:
λ(x, d, θ) =M − f(θ) · ∇x ln q(x).

4) The jump kernel is:

Tx[(d, θ), (d
′, θ′)]

=

 0 if d′ = d;
δ(θ′ − θ − π) if d = −1, d′ = +1;
δ(θ′ − θ − π

2 ) if d = +1, d′ = −1.

That is, in this simplified three-step process, the pro-
cess must always ‘flick’ by exactly 90 degrees.

To ensure that the stationary distribution can be written
as ps(x, d, θ) = α(x)β(d, θ), we must have that the jump
intensity rate is independent of state location x. This occurs
only if ∇x ln q(x) is equal to a constant. To clearly show
how the direction of increased gradient effects the stationary
distribution, we choose q(x) = q(x1, x2) = exp(ax1),
giving ∇x ln q(x) =

[
a 0

]
. We require that M ≥ |a| to

ensure that λ(x,m) is positive for all x and m.
Because we can use the same techniques as in Proposition

1 to prove that this process converges to a unique stationary
distribution, we guess the form of the stationary distribution
and check to ensure that it satisfies Equations 9 and 10.
Guessing that ps(x, d, θ) ∝ q2(x)β(d, θ) and plugging into
Equation 9, we get that β(θ,−1) = β(θ + π,+1), implying
that the process, spends, on average, equal time in forward
and in reverse. Now we use Equation 10 and luckily obtain
a consistent set of equations for β. Solving these equations,
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Fig. 2. Convergence of two-step and three-step processes. The KL
distances over time between empirical averages of processes and q2(x).
The two processes considered are a two-step process with no forward or
backward bias and a = 2 and a three-step process with a = 1 and pF = 1.
Both processes seem to converge with the same rate.

we obtain that the stationary distribution is

ps(x, d, θ) ∝ q2(x)β(d, θ) , where

β(0,−1) = β(π,+1) =
M(M + a)

4(2M2 − a2)
,

β(π,−1) = β(0,+1) =
M(M − a)
4(2M2 − a2)

,

and β(
π

2
,−1) = β(

3π

2
,−1) = β(

π

2
,+1) = β(

3π

2
,+1)

=
(M + a)(M − a)
4(2M2 − a2)

.

The process is thus more likely to move backward than to
move forward toward higher concentrations. As M ↓ |a|, the
process spends a greater percentage of its time either moving
backward toward higher concentrations or forward toward
lower concentrations. However, if M�|a|, β(θ, v) ≈ 1

8 , and
the process spends equal amount of time in each direction.

VI. SIMULATIONS

In all of our simulations of three-step processes, the
distributions seem to converge to a value h(x,m), where∫

M3

h(x,m)ν(dm) ∝ q2a(x) .

To see this, we follow [4] and measure performance
using a Kullback-Liebler (KL) divergence measure, which
gives a distance between two probability densities. The KL
distance between the actual distribution p1(x) and a predicted
distribution p2(x) at time t is

H(t) = −
∫
R2

p1(x, t) ln
p1(x, t)

p1(x, t)/2 + p2(x, t)/2
dx ≥ 0 .

If p1(x, t) → p2(x, t) as t → ∞, H(t) → 0. In the
simulations, we take p1(x, t) to be the empirical average of
the positions of all agents over the time interval [0, t], using
summation over a grid to approximate the integration.
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Fig. 3. Effects of the probability of flicking on convergence rate
of three-step process. As a run-reverse system’s probability of flicking
decreases, its convergence rate slightly decreases.

In the simulations, we use a Cartesian environment that
is 400x400 units. To avoid complications at boundaries, we
identify edges so that the environment is a torus. Because
the cells respond to measurements of their environment by
modifying their jump rates, the time discretization used in
the simulations is very important. In these simulations, we
take the speed of the cells to be one position unit per time
unit and the time discretization to be dt = 0.05 time units
per time step. So that the cells can more efficiently diffuse
through the environment, we initialize the cells with a small
jump rate parameter M(0) = 0.001 and then update M(t)
online to ensure that the jump rate remains positive. We take
the simulation environment to contain a Gaussian-distributed
nutrient patch described by the equation

q(x1, x2) =
1

2πσx1
σx2

exp
(
− (x1 − c1)2

2σ2
x1

− (x2 − c2)2

2σ2
x2

)
,

where we take c1 = c2 = 200 and σx1
= σx2

= 500/16.
In our simplified simulations, the environment is static; the
nutrients do not dissipate. Furthermore, we do not simulate
Brownian noise. There is no uncertainty in the dynamics or
measurements of the agents.

A. A two-step versus a three-step process

Intuitively, it may seem that reversing strategies pay too
high a price to more tightly accumulate around nutrient
sources. By reversing, they ‘waste’ time backtracking instead
of simply following the source. However, the simulation
shown in Figure 2 shows that the drift velocity of a run-
reverse-flick process is no less than that of a run-tumble
process that scales its jump rate to a = 2. The simulation
furthermore suggests that both processes converge to very
similar stationary distributions proportional to q2(x).

B. Added robustness?

If there is an imperfection in the reorientation mechanism
of a two-step process, a bias may appear in the transition
probabilities causing the process to favor reversing of con-
tinuing forward. As shown in Theorem 1, this would cause
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Fig. 4. Effects of reorientation biases on convergence rate. The
simulation shows that the reorientation bias of a three-step process has little
effect on the convergence rate, as long as the mechanism for reorientations
allows full exploration of the space.

the process to converge to a different, possibly unknown
stationary distribution. However, simulations of three-step
processes suggest a robustness to uncertainties in the reori-
entation mechanism. This perhaps gives reversing strategies
a greater advantage.

1) Modifying probability of flicking: Figures 3 shows that
decreasing the probability of flick has very little effect on
the overall performance of a run-reverse-flick system. As
long as the probability of flick is greater than zero—so that
the system does not become trapped on a linear manifold,
the system seems to converge to the desired stationary
distribution. Convergence speed decreases as the probability
of flick decreases because it takes longer for the system to
align itself with the measured nutrient gradient.

2) Modifying probability density of orientations of flicks:
Figures 4 suggests that there is very little advantage to be
gained from very precise reorientation mechanisms for run-
reverse-flick processes. A system that favors 30 degree flicks
performs almost as well as a system that favors 90 degree
flicks or just uniformly tumbles after a reversal.

VII. FUTURE WORK

In this work, we suggest that marine bacteria, such as
Vibrio, have evolved more complicated reversing strategies
because they allow for tighter accumulation and are more
robust to noise and inaccuracies in reorientation. But there is
much work to be done to fully understand the implications of
these evolved reversing strategies. We are currently working
on methods to more rigorously characterize the performance
of three-step processes. We hope that numerical analysis of
the FPK equation will give further insight into how the
stationary distribution of three-step processes depends on
the orientation state. We are also trying to derive rigorous
diffusion approximations (as in [22]) that will enable us to
easily characterize strategies in terms of their diffusivity and
chemotactic drift rate.

Populations of motile bacteria are so impressive because
they can achieve particular distributions using only local
measurements of the environment. Cells require no knowl-
edge of their position or communication capabilities. As we

better understand why a particular evolved motility strategy
is optimal for a particular environment, we can gain intuition
on how to engineer minimalistic multi-agent robotic systems
that are as successful as bacteria.
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stochastic multi-agent optimization procedure with point measure-
ments,” in Hybrid Systems: Computation and Control, M. Egerstedt
and B. Mishra, Eds. Springer, 2008, pp. 358–371.

[4] A. R. Mesquita, “Exploiting Stochasticity in Multi-agent Systems,”
Ph.D. dissertation, University of California, Santa Barbara, 2010.

[5] J. P. Hespanha, “A model for stochastic hybrid systems with applica-
tion to communication networks,” Nonlinear Analysis-Theory Methods
& Applications, vol. 62, no. 8, pp. 1353–1383, 2005.

[6] A. Kacelnik, J. R. Krebs, and C. Bernstein, “The ideal free distribution
and predator-prey populations.” Trends in Ecology & Evolution, vol. 7,
no. 2, p. 50, 1992.

[7] M. Davis, Markov Models & Optimization. Boca Raton: Chapman
& Hall/CRC, 1993.

[8] M. Jacobsen, Point Process Theory and Applications:, ser. Marked
Point and Piecewise Deterministic Processes. Boston: Birkhauser,
2006.

[9] S. P. Meyn and R. L. Tweedie, “Stability of Markovian processes II:
Continuous-time processes and sampled chains,” Advances in Applied
Probability, pp. 487–517, 1993.

[10] S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability.
Cambridge University Press, 2009.

[11] O. Hernández-Lerma and J. B. Lasserre, Markov Chains and Invariant
Probabilities. Springer, 2003.

[12] L. Xie, T. Altindal, S. Chattopadhyay, and X.-L. Wu, “Bacterial
flagellum as a propeller and as a rudder for efficient chemotaxis,”
Proceedings of the National Academy of Sciences, vol. 108, no. 6, pp.
2246–2251, Jan. 2011.

[13] R. Stocker, “Reverse and flick: Hybrid locomotion in bacteria,” Pro-
ceedings of the National Academy of Sciences, vol. 108, no. 7, pp.
2635–2636, Feb. 2011.

[14] ——, “Marine Microbes See a Sea of Gradients,” Science, vol. 338,
no. 6107, pp. 628–633, Nov. 2012.

[15] R. Stocker, J. R. Seymour, A. Samadani, D. E. Hunt, and M. F.
Polz, “Rapid chemotactic response enables marine bacteria to exploit
ephemeral microscale nutrient patches,” Proceedings of the National
Academy of Sciences, vol. 105, no. 11, pp. 4209–4214, 2008.

[16] N. Norris, “Exploring the Optimality of Various Bacterial Motility
Strategies: a Stochastic Hybrid Systems Approach,” Master’s thesis,
Massachusetts Institute of Technology, Cambridge, 2013.

[17] M. D. Lazova, T. Ahmed, D. Bellomo, R. Stocker, and T. S. Shimizu,
“Response rescaling in bacterial chemotaxis,” Proceedings of the
National Academy of Sciences, vol. 108, no. 33, pp. 13 870–13 875,
2011.

[18] O. Shoval, L. Goentoro, Y. Hart, A. Mayo, E. Sontag, and U. Alon,
“Fold-change detection and scalar symmetry of sensory input fields,”
Proceedings of the National Academy of Sciences, vol. 107, no. 36,
pp. 15 995–16 000, 2010.

[19] K. Son, J. S. Guasto, and R. Stocker, “Bacteria can exploit a flagellar
buckling instability to change direction,” Nature Physics, July 2013.

[20] T. E. Harris, “The existence of stationary measures for certain Markov
processes,” in Third Berkeley Symposium, 1956, pp. 113–124.

[21] J. Bect, “A unifying formulation of the Fokker–Planck–Kolmogorov
equation for general stochastic hybrid systems,” Nonlinear Analysis:
Hybrid Systems, vol. 4, no. 2, pp. 357–370, 2010.

[22] H. G. Othmer and T. Hillen, “The diffusion limit of transport equations
derived from velocity-jump processes,” Siam Journal on Applied
Mathematics, vol. 61, no. 3, pp. 751–775, 2000.

[23] N. G. Van Kampen, Stochastic Processes in Physics and Chemistry,
3rd ed. Amsterdam: Elsevier, 2007.

[24] D. Grunbaum, “Advection-diffusion equations for generalized tactic
searching behaviors,” Journal of Mathematical Biology, vol. 38, no. 2,
pp. 169–194, 1999.

3416


