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Baroclinic geostrophic adjustment in a rotating circular basin is investigated in a
laboratory study. The adjustment process consists of a linear phase before advective
and dissipative effects dominate the response for longer time. This work describes in
detail the hydrodynamics and energetics of the linear phase of the adjustment process
of a two-layer fluid from an initial step height discontinuity in the density interface
�H to a final response consisting of both geostrophic and fluctuating components. For
a forcing lengthscale rf equal to the basin radius R0, the geostrophic component takes
the form of a basin-scale double gyre while the fluctuating component is composed
of baroclinic Kelvin and Poincaré waves. The Burger number S =R/rf (R is the
baroclinic Rossby radius of deformation) and the dimensionless forcing amplitude
ε = �H/H1 (H1 is the upper-layer depth) characterize the response of the adjustment
process. In particular, comparisons between analytical solutions and laboratory meas-
urements indicate that for time τ : 1 <τ <S−1 (τ is time scaled by the inertial period
2π/f ), the basin-scale double gyre is established, followed by a period where the double
gyre is sustained, given by S−1 <τ < 2ε−1 for a moderate forcing and S−1 <τ <τD

for a weak forcing (τD is the dimensionless dissipation timescale due to Ekman
damping). The analytical solution is used to calculate the energetics of the baroclinic
geostrophic adjustment. The results are found to compare well with previous studies
with partitioning of energy between the geostrophic and fluctuating components
exhibiting a strong dependence on S. Finally, the outcomes of this study are considered
in terms of their application to lakes influenced by the rotation of the Earth.

1. Introduction
The seminal work on the geostrophic adjustment of a rotating fluid under the

influence of gravity, in which the balance between horizontal pressure gradients and
the Coriolis force is restored from an initially unbalanced state, was performed by
Rossby (1937, 1938). Gill (1982) considered an infinite domain initially at rest with an
initial step in the surface elevation and after linearizing under the assumption of small
perturbations, was able to show that the establishment of geostrophic balance was
made possible by the radiation of Poincaré waves away from an adjustment region of
width equal to the Rossby radius of deformation R. Subsequent studies have focused
on extending Gill’s (1982) solution by considering the weakly nonlinear (Hermann,
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Rhines & Johnson 1989) and fully nonlinear (Helfrich, Kuo & Pratt 1999) barotropic
geostrophic adjustment in a rotating channel of infinite length. Hermann et al. (1989)
proposed that a weakly nonlinear barotropic geostrophic adjustment in a rotating
channel was separable into an initial linear phase followed by a nonlinear phase.
During the linear phase, the fluctuating response (consisting of Kelvin and Poincaré
waves) generated relative vorticity by the stretching and compression of planetary
vortex lines as the waves propagate away from the adjustment region setting up
boundary currents in their wake. This was followed by a much slower, nonlinear phase
where advection of fluid columns rearranges the initial potential vorticity distribution.
More recently, Stern & Helfrich (2002) investigated the temporal evolution of the
boundary current, generated by the geostrophic adjustment process in a two-layer
fluid, in order to model rotating boundary currents which are readily observable in
the coastal ocean (Dorman 1987) and the atmospheric boundary layer (Gill 1982).

The energetics of linear geostrophic adjustment processes have also been studied
extensively for both homogeneous (Gill 1982; Middleton 1987) and two-layer fluids
(Ou 1986; van Heijst & Smeed 1986; Boss & Thompson 1995), with particular
attention given to the partitioning of energy between the two components (geostrophic
and fluctuating) of the response. Gill (1982) defined the available potential energy
(APE) released by the adjustment process to be the difference between the potential
energy associated with the initial unbalanced state and the potential energy residing
in the final geostrophic component of the response. Gill (1982) concluded that for
an infinite domain the kinetic energy of the geostrophic response accounted for one
third of the APE while the remaining two thirds resided in the fluctuating response.
Van Heijst & Smeed (1986) considered a baroclinic geostrophic adjustment in a
semi-infinite domain and found that the partitioning of energy was a function of
the distance between the front and a boundary which lies parallel to that front.
Specifically, the kinetic energy of the geostrophic response was found to vary between
zero when the front was at the boundary and Gill’s infinite domain limit of one third
of the APE when the front was infinitely far from the boundary.

Our interest in the present study is in the dynamics and energetics of the adjustment
in a fully bounded domain which traps the fluctuating response so that an end state
consisting purely of a geostrophic response will not be realized. We define geostrophic
adjustment to be the transition from an initial unbalanced state to a response consist-
ing of geostrophic and fluctuating components with a signature over the entire domain.
In particular, we investigate the baroclinic geostrophic adjustment in a rotating cir-
cular basin (figure 1).

The time taken for the initial adjustment at the step height discontinuity and the
generation of a fluctuating response influenced by rotation is the inertial period
(e.g. Gill 1982).

TI =
2π

f
, (1.1)

where f is the inertial frequency.
The closed nature of the circular basin introduces a second timescale given by

t2 =
2πR0

c0

, (1.2)

where R0 is the basin radius and c0 is the baroclinic phase speed; t2 characterizes
the time taken for the gravest-mode Kelvin wave to propagate around the basin,
establishing a boundary current in its wake. Time t2 represents the time at which the
geostrophic and fluctuating responses are found over the entire domain.
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Figure 1. A side view of the initial condition for a baroclinic geostrophic adjustment in a
circular basin of radius R0. The step height discontinuity �H across the tank diameter ensures
that the upper (H1) and lower (H2) layer depths are equally displaced from the undisturbed
position of the density interface.

Hermann et al. (1989) suggested that the timescale after which advective behaviour
associated with the amplitude of an initial disturbance may be observed is given by

t3 =
2πH

�Hf
, (1.3)

where �H is an initial step height discontinuity and H is the layer depth.
The model configuration given in figure 1 suggests that the geostrophic flow

established in the bottom layer will be subject to Ekman damping, with a characteristic
timescale for dissipation (e.g. Gill 1982) given by

t4 =
H2(

1
2
f ν

)1/2
, (1.4)

after neglecting the interface deformation due to the initial condition.
The motivation for this study comes from recent work which focused on the

large-scale hydrodynamic processes occurring within lakes for which the influence of
Earth’s rotation is important. Antenucci & Imberger (2001) used an analytical model
to investigate the ratio of kinetic to potential energy for freely evolving basin-scale
internal waves. The linear analysis of the basin-scale free motions in a circular basin
discussed by Csanady (1967) and the analytical description of the linearized initial
boundary value problem associated with the evolution of a surface tilt in a circular
lake considered by Stocker & Imberger (2003) both indicate that the basin-scale
response to an initial forcing consists of geostrophic and fluctuating components.

In this paper we describe a laboratory experiment to examine the response in a
closed basin to an initial step function discontinuity in the internal density gradient.
The experimental measurements are quantitatively compared with the corresponding
solution of the linearized initial boundary value problem to determine the timescale
over which such linearized solutions may be valid, given that both friction and
nonlinear effects manifest themselves not only in the experiments described below
but also in the field.

The remainder of the paper consists of the following. Section 2 introduces the experi-
mental facility and the dimensionless parameters used to scale the problem. Laboratory
experiments used to investigate the hydrodynamics of a baroclinic geostrophic



66 G. W. Wake, G. N. Ivey, J. Imberger, N. R. McDonald and R. Stocker

Overhead
digital video

camera

Semi-cylindrical
insert

Floor

Rotating turntable frame

Attached
to

counter-weight

Cylindrical tank

f

Cap to minimize
mixing

Saline solution
injection point

Saline lower layer

Fresh upper layer

Figure 2. The rotating turntable facility.

adjustment in a circular basin are described in § 3. In § 4 we present an analytical
solution for the steady component of the initial boundary value problem. In § 5
we perform a quantitative comparison between the experimental and analytical appro-
aches in order to determine the timescale over which linear solutions remain valid. In
§ 6 we calculate the energetics for the linear geostrophic adjustment and the outcomes
of this study are considered in terms of their application to lakes influenced by the
rotation of the Earth.

2. Experimental facility
The model configuration and experimental setup are detailed in figures 1, 2 and 3.

The experiments were conducted in a 95 cm diameter cylindrical Perspex tank of depth
50 cm. The tank was mounted on a rotating turntable that revolved counterclockwise
at a constant rate f = 2Ω (figure 2). The tank could be divided into two regions of
equal volume by a removable semi-cylindrical Perspex insert (open at the top and
bottom) that was raised or lowered by means of a pulley system attached to the
rotating table-top frame (figure 2).

In a typical experiment, the tank was filled with fresh water to the desired upper-
layer depth and allowed to spin up into solid body rotation. A saline solution was then
carefully introduced beneath the lighter, fresher water until the desired lower-layer
depth was achieved. The amount of mixing due to the insertion of the saline solution
was minimized by placing a cap over the injection point that forced the introduced
denser fluid out in a radial fashion. Once the fluid motions resulting from the filling
process had dissipated and solid body rotation was re-established, the semi-cylindrical
insert was carefully lowered into the tank to a depth of at least 5 cm below the
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Figure 3. The experimental facility showing the position of the two conductivity-temperature
(CT) probes and the radial distribution of the ultrasonic probes. The distances of the ultrasonic
probes from the sidewall were 3 cm, 13 cm, 20 cm, 27 cm, 38 cm, and 45 cm respectively. The
two-dimensional micro acoustic Doppler velocimeter (not shown) was placed adjacent to
positions 1, 3 and 5 in subsequent repetitions of a given experimental run.

density interface, effectively partitioning the cylindrical tank into two regions: inside
the semi-cylindrical insert (inner region) and outside the semi-cylindrical insert (outer
region). A depression of the upper layer within the inner region was accomplished by
pumping fluid from the upper layer in the outer region into the upper layer of the
inner region which, in turn, drove a return flow of lower-layer fluid underneath the
insert. Thickening of the density interface caused by pumping was minimized using a
low pumping rate (8 ml s−1) and by introducing the fresh water into the inner region
via a horizontal diffuser.

This transfer pumping caused a stretching (in the upper layer of the inner region and
the lower layer of the outer region) and compression (in the lower layer of the inner
region and the upper layer of the outer region) of fluid columns, and as a consequence
of the conservation of potential vorticity, introduced some relative vorticity into
each layer of each region. As a result, the experiment was not initiated until this
relative vorticity had dissipated (typically 2–3 hours). In this fashion, an initial
potential energy and potential vorticity contrast between inner and outer regions was
created.

Density profiles were taken in both the inner and outer regions, once the two-layer
fluid had returned to its quiescent state, to measure the introduced step height
discontinuity and to ensure that the density interface had not been thickened consi-
derably during the setup process (figure 4). Profiles were obtained by traversing two
conductivity-temperature (CT) probes (figure 3) over the total depth and then using the
equations of Ruddick & Shirtcliffe (1979) to compute the fluid density. An experiment
was initiated by swiftly removing the semi-cylindrical insert using the pulley system,
while at the same time ensuring that the rotation rate remained constant.
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Figure 4. Density profiles taken from the CT probe located outside the semi-cylindrical insert
before (solid line) and after (dashed line) the introduction of the potential energy step for run
IV (see table 1).

Run �H H1 H2 g′ f S ε

I 1 10 10 6.3 0.44 0.25 0.1
II 2 10 10 18.8 0.19 1 0.2

III 2 10 10 17.1 0.25 0.75 0.2
IV 2 10 10 12.1 0.31 0.5 0.2
V 2 10 10 6.3 0.44 0.25 0.2

VI 4 10 10 18.8 0.19 1 0.4
VII 4 10 10 17.1 0.25 0.75 0.4

VIII 4 10 10 12.1 0.31 0.5 0.4
IX 8 10 10 18.8 0.19 1 0.8

Table 1. The experimental programme: all data in c.g.s. units.

The interface displacement created by the release was sampled at 5 Hz at six
positions across the outer region by ultrasonic probes (figure 3) while the mid-depth
upper-layer azimuthal and radial velocities were sampled at 10 Hz using a two-
dimensional micro acoustic Doppler velocimeter (ADV). Each experimental run was
repeated three times with the sample volume of the micro ADV being positioned
adjacent to positions 1, 3 and 5 in each instance. Visualization experiments were also
performed in which dye was injected at various locations in the upper layer and an
overhead digital video camera mounted on the rotating turntable (figure 2) recorded
the dye movement following the initiation of an experiment (figure 5).

A summary of the experimental programme is given in table 1. The interface profile
η∗ initially had a step height discontinuity across the tank diameter of magnitude
�H (figure 1). The upper and lower undisturbed layer depths were H1 and H2

respectively. The reduced gravity g′ was varied between 6.3 and 18.8 cm s−2 where
g′ = g�ρ/ρ2 and �ρ is the density difference between the upper and lower layers
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ρ2 − ρ1 and g is the acceleration due to gravity. The radius of the semi-cylindrical
forcing mechanism rf was equal to the dimensional radius R0 of the cylindrical tank, as
shown in figure 1, which was scaled with the baroclinic Rossby radius of deformation
given by R = c0/f where c0 = (g′H1H2/(H1 + H2))

1/2 is the linear baroclinic phase
speed to give the Burger number S = c0/R0f , which provides a measure of the
relative importance of stratification versus rotation (e.g. Antenucci & Imberger 2001).
The inertial frequency f range was 0.19–0.44 s−1 so that S varied between 1 and
0.25 and the interface displacement due to the centrifugal force is negligible (< 0.1 cm).
The initial step discontinuity �H was scaled by the undisturbed upper-layer depth H1

so that ε = �H/H1 was the dimensionless forcing amplitude while the interface dis-
placement η∗ was non-dimensionalized by �H so that η = η∗/�H was the dimension-
less displacement of the density interface from its mean position. The scaled depth ε

was varied between 0.1 and 0.8, and the ratio of the layer depths H1/H2 was unity.
Time t was scaled using the inertial period TI = 2π/f so that τ = t/TI was dimen-
sionless time and the velocity was scaled using εf R so that the dimensionless azimuthal
and radial velocities in the upper layer were ūa and ūr respectively.

3. Evolution of the geostrophic adjustment process in a rotating circular basin
The geometry of the problem indicates that the initial step height discontinuity

introduced a symmetry between the upper and lower layers prior to the initiation of
an experiment (figure 1). In the following, we describe in detail the hydrodynamics
of the upper layer since the fundamental processes identified within this layer occur
simultaneously in the lower layer, although velocities are in the opposite direction to
their upper layer counterpart.

Results from a typical experimental run (run IV) are shown in figures 5, 6 and 7.
Figure 5 details the results of a dye study while figures 6(a) and 7(a) present time
series measurements of the interface displacement and azimuthal velocity, respectively.
Consider first the plan view images taken from the dye study for run IV (figure 5).
Regard each image as consisting of two semi-circular regions, the initially shallower
upper layer in the upper half of the circular basin (shallow half) and the initially
deeper upper layer in the lower half of the basin (deep half) (see figure 5(a)). Dye
patches were inserted into the upper layer, four at the basin boundary (labelled A
and B in the shallow half and C and D in the deep half) and one either side of the
step discontinuity (labelled E in the shallow half and F in the deep half). The removal
of the barrier dividing the two halves of the basin resulted in a horizontal pressure
gradient initially driving a buoyant flow down gradient. The pressure gradient is
quickly balanced by the Coriolis force and the resulting thermal wind balance induces
a geostrophic mean flow which propagates parallel to the initial step across the width
of the basin diameter. This geostrophic mean flow is captured by the movement of
dye patches E and F between figures 5(a) and 5(c), but is most noticeable at later
times by the movement of dye patches A and D between figures 5(e) and (5f ).

Concomitantly, Kelvin waves of elevation (located at point X in figure 5(a)) and
depression (located at point Y in figure 5(a)) are generated at the sidewall boundaries
of the basin. The wave of depression propagates cyclonically along the boundary into
the shallow half of the basin, stretching planetary vorticity lines (Hermann et al. 1989).
Such action induces positive relative vorticity which results in a cyclonic boundary
current trailing the wave (Stern & Helfrich 2002). This is illustrated by the movement
of dye patches A and B between figures 5(a) and 5(d). Similarly, the wave of elevation
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Figure 5. Plan view images of streak lines produced from dye inserted into the upper layer
for run IV. Each image consists of two semi-circular regions, the initially shallower upper layer
in the upper half of the circular basin (shallow half) and the initially deeper upper layer in the
lower half of the basin (deep half). The dashed line in (a) indicates the position of the barrier
which separates the shallow half and the deep half prior to its removal. The original positions
of the dye patches before the initiation of the experiment are labelled A–F. Upon removal of
the barrier, a Kelvin wave of depression is generated at Y and Kelvin wave of elevation at X.
The location of the dye patches (b) after 1TI , (c) after 3TI , (d) after 6TI , (e) after 10TI , (f )
and after 15TI are presented. Rotation is in a counter-clockwise direction.
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propagates cyclonically along the boundary into the deep half, compressing planetary
vorticity lines. This induces negative relative vorticity and generates an anticyclonic
boundary current trailing the wave. This process is depicted by the movement of the
dye patches C and D between figures 5(a) and 5(d).

The cyclonic flow in the initially shallow half and the anticyclonic flow in the
initially deep half create regions of flow divergence (illustrated by the movement of
dye patches E and F between figures 5(c) and 5(d)) and convergence (illustrated by
the movement of dye patches A and D between figures 5(d) and 5(e)) located at the
intersection of the initial step discontinuity with the sidewall boundaries of the basin.
The connectivity between these two regions is provided by the geostrophic mean
flow across the basin, resulting in a geostrophically balanced double gyre consisting
of a cyclonic circulation in the shallow half (illustrated by the movement of dye
patches A and E between figures 5(d) and 5(f )) and an anticyclonic circulation in the
deep half (illustrated by the movement of dye patches D and F between figures 5(d)
and 5(f )).

Now consider a typical example of the interface displacement and azimuthal velocity
time series presented in figures 6(a) and 7(a) respectively. These illustrate that the
fluctuating component of the response consisted of a range of frequencies. For all
time series measurements, the fluctuating motion decayed in time with no significant
wave motion evident after 40TI . A comparison of the time series collected from
ultrasonic probes and from the micro ADV at positions 1 and 5 clearly shows that
the amplitude of the fluctuating response decays offshore.

Power spectra for the interface displacement and velocity time series in figures 6(a)
and 7(a) are shown in figures 6(b) and 7(b) respectively. When the dimensionless wave
frequency σ = w/f < 1 a wave is classified as a Kelvin (sub-inertial) wave and when
σ > 1 it is classified as a Poincaré (super-inertial) wave (Csanady 1967). Comparison
of the interface displacement and velocity power spectra in figures 6(b) and 7(b)
clearly indicates a sub-inertial peak and two super-inertial peaks at almost identical
frequencies which suggests that the fluctuating response for run IV consists of a
Kelvin and two Poincaré modes.

The frequencies identified from the interface displacement and velocity power
spectra in figures 6(b) and 7(b) are compared with the predictions of wave frequency
for linear basin-scale baroclinic waves so that the modal structure (azimuthal, radial)
and direction of propagation (cyclonic (−) or anticyclonic (+)) may be determined.
For Poincaré waves the dispersion relation is given by

1

S

√
(σ )2 − 1Jn−1

(
1

S

√
(σ )2 − 1

)
+ n

(
1

σ
− 1

)
Jn

(
1

S

√
(σ )2 − 1

)
= 0 (3.1)

where Jn is the Bessel function of real argument of order n, where n is the azimuthal
mode number. Equation (3.1) is an eigenvalue problem for which solutions of
increasing σ correspond to higher radial modes for fixed n (e.g. Antenucci & Imberger
2001). A frequency equation of identical form to (3.1) is obtained for Kelvin waves
using the identity Jn(ix) = inIn(x) after noting that the coefficient of the first term and
the argument of the Bessel function in (3.1) is imaginary for a Kelvin wave (Csanady
1967). For run VI the fluctuating response consists of a cyclonic (1,1) Kelvin wave,
an anticyclonic (1,1) Poincaré wave and a cyclonic (2,1) Poincaré wave.

A summary of the waves excited for each run is given in table 2. It is evident that
the wave field exhibits a functional dependence on S, with higher azimuthal modes
being excited as the influence of rotation becomes more important (table 2).
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Figure 6. (a) Time series of the interface displacement η collected at 5 Hz by the ultrasonic
probes from positions 1, 3 and 5 for run IV. (b) Power spectra of the interface displacements
shown in (a), with positions 1, 3 and 5 being represented by the solid, dashed and dash-dot
lines respectively. The wave frequency ω is scaled by f . The dashed vertical line identifies the
inertial frequency f while the solid vertical lines identify the significant peaks which consist of
a sub-inertial wave and two super-inertial waves. Spectra have been smoothed in the frequency
domain to improve confidence, with the 95% confidence level given as the difference between
the two dotted lines at a prescribed frequency (e.g. Bendat & Piersol 2000).

Lamb (1932) used linear inviscid theory to argue that for a Kelvin wave solution
of azimuthal mode n to exist, it must satisfy

S <

[
1

n(n + 1)

]1/2

. (3.2)
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Figure 7. (a) Time series of the azimuthal velocity ūa collected at 10Hz by the two-
dimensional micro ADV from positions 1, 3 and 5 for run IV. (b) Power spectra of the
azimuthal velocity shown in (a), with positions 1, 3 and 5 being represented by the solid, dashed
and dash-dot lines respectively. The wave frequency ω is scaled by f . The dashed vertical line
identifies the inertial frequency f while the solid vertical lines identify the significant peaks
which consist of a sub-inertial wave and two super-inertial waves. Spectra were smoothed in
a similar manner to figure 6.

This criterion accurately predicts the number of Kelvin waves excited for all laboratory
experiments except when S = 0.75. Inspection of (3.2) indicates that when S > 1/

√
2

no Kelvin wave can exist, contradicting the experimental observation that a Kelvin
wave is excited when S = 0.75 > 1/

√
2 (see table 2). While (3.2) is derived from linear

inviscid theory, the waves generated in the laboratory experiment are influenced by
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S Mode Frequency Type

1 −(1, 1) Super-inertial Poincaré wave
+(1, 1) Super-inertial Poincaré wave

0.75 −(1, 1) Sub-inertial Kelvin wave
+(1, 1) Super-inertial Poincaré wave

0.5 −(1, 1) Sub-inertial Kelvin wave
−(2, 1) Super-inertial Kelvin wave
+(1, 1) Super-inertial Poincaré wave

0.25 −(1, 1) Sub-inertial Kelvin wave
−(2, 1) Sub-inertial Kelvin wave
−(3, 1) Sub-inertial Kelvin wave
+(1, 1) Super-inertial Poincaré wave

Table 2. The dominant basin-scale baroclinic waves observed in the laboratory experiments.
The direction of propagation ((−) cyclonic or (+) anticyclonic) and modal structure (given
above as (azimuthal mode, radial mode)) are assigned on the basis of a comparison of the
measured frequencies with the theoretical predictions of wave frequency (3.1). The excited
modes are independent of the initial forcing, ε.

friction. Frictional effects lead to a reduction in the phase speed which, in turn, leads
to the observed reduction in wave frequency (Martinsen & Weber 1981). In this
instance, we suggest that the effect is sufficient to shift the predicted super-inertial
wave into the sub-inertial range (see table 2).

In summary, the analysis of dye visualization experiments and of the interface
displacement and velocity time series, clearly illustrate the temporal evolution of the
geostrophic adjustment process in a rotating circular basin, from an initially un-
balanced state to a response consisting of geostrophic and fluctuating components.

4. Steady solution of the initial boundary value problem
Consider the initial state of the two-layer fluid contained in the cylindrical tank as

presented in figure 1. The initial dimensional interface profile η∗ has a discontinuity
in its height across the tank diameter of magnitude �H . It is assumed that both
�H/H1 � 1 and �H/H2 � 1, so that the starting point of the analysis is the rotating
shallow water equations (Gill 1976).

These are made dimensionless, using the inertial period TI as the timescale, the
baroclinic radius of deformation R as the horizontal lengthscale and εf R as the
velocity scale in each layer, where ε = �H/H1. The ratio of the depths δ =H1/H2 is
assumed to be order one.

The dimensionless equations for the upper layer (layer 1) are

1

2π
u1τ + εu1 · ∇u1 + k × u1 = −∇p1, (4.1a)

− 1

2π
ητ + ∇ · [u1(1 − εη)] = 0, (4.1b)

and for the lower layer (layer 2) they are

1

2π
u2τ + εu2 · ∇u2 + k × u2 = −∇p2, (4.2a)

1

2π
δητ + ∇ · [u2(1 + δεη)] = 0, (4.2b)
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Figure 8. Contour plot of the interface displacement η for the geostrophically balanced
double gyre for S = 0.5, calculated from (4.3) using a contour interval of 0.02. The dashed line
is the radial transect along which the ultrasonic probes, indicated by the dots, were positioned
in the laboratory experiment (figure 3).

where un and pn are the velocities and pressures in the nth layer respectively and
η = η∗/�H is the dimensionless displacement of the density interface from its mean
position. The relationship between the pressures is p2 =p1 + (1 + δ)η. For convenience,
the dimensionless radius of the circular basin is R0/R = rf /R = S−1 and the free surface
is assumed to be fixed.

The derivation of the steady, geostrophically adjusted linear solution to (4.1) and
(4.2), subject to the initial and boundary conditions, is provided in Appendix A. The
steady solution to the initial boundary value problem is

η = − 2

π

∞∑
n=0

1

2n + 1
f2n+1(r) sin(2n + 1)θ, (4.3)

where

fn(r) =
Kn(S

−1)In(r)

In(S−1)

∫ S−1

0

ξIn(ξ ) dξ − In(r)

∫ S−1

r

ξKn(ξ ) dξ − Kn(r)

∫ r

0

ξIn(ξ ) dξ. (4.4)

Equation (4.3) represents a geostrophically balanced double gyre (figure 8) which
satisfies ∇2η − η = − (1/2) sgn θ .

5. Quantitative comparison of the laboratory experiments and the
analytical solution

If we non-dimensionalize the timescales (1.2), (1.3) and (1.4) by the inertial period
TI then

τ2 =
R0

R
= S−1, (5.1)

τ3 =
H1

�H
= ε−1, (5.2)

τ4 =
H2

π

(
f

2ν

)1/2

= τD. (5.3)



76 G. W. Wake, G. N. Ivey, J. Imberger, N. R. McDonald and R. Stocker

0 0.5 1.0
–0.05

0.05

0.15

0.25

0 0.5 1.0
–0.05

0.05

0.15

0.25

0 0.5 1.0
–0.05

0.05

0.15

0.25

0 0.5 1.0
–0.05

0.05

0.15

0.25

0 0.5 1.0
–0.4

–0.2

0

0.2

0.4

0 0.5 1.0
–0.4

–0.2

0

0.2

0.4

0 0.5 1.0
–0.4

–0.2

0

0.2

0.4

0 0.5 1.0
–0.4

–0.2

0

0.2

0.4

(a)

η

(i) (ii) (iii) (iv)

(b)

r/R0 r/R0 r/R0

(ii) (iii) (iv)

ua

r/R0

(i)

Figure 9. Comparison between the experimental and analytical profiles of the geostrophic
component along the radial transect, indicated in figure 3, for run IV (S = 0.5, ε = 0.2) after
(i) 3TI , (ii) 6TI , (iii) 10TI , (iv) 15TI , (a) for the interface displacement η, (b) for the azimuthal
velocity ua . The solid line is the analytical solution while the asterisks and diamonds are
the measured interface displacements and azimuthal velocities respectively. Error estimates
calculated from the variance between repetitions of an experimental run were of the order of
instrument sensitivity (± 0.02 for the ultrasonic probes and ± 0.04 for the micro ADV).

The geostrophic and fluctuating components of the response were separated by low-
pass filtering the interface displacement and velocity time series. The cut-off frequency
of the low-pass filter was chosen as the frequency of the gravest fluctuating mode.
Noting (1.2) and (5.1), the low-pass-filtered signal was applicable for non-dimensional
times greater than S−1 and provided point measurements of the temporal evolution of
the geostrophic interface displacement and velocity along the radial transect shown
in figure 3.

This procedure was used to compare the measured radial interface displacement
and velocity profiles with the prediction of the analytical solution (4.3) for the
geostrophic response. The results for run IV are shown in figure 9. The observed
interface displacement and velocity profiles and their analytical predictions coincide
after 3TI (see panel (i) of figures 9(a) and 9(b)) and still exhibit excellent agreement
after 6TI (see panel (ii) of figures 9(a) and 9(b)). After 10TI the interface displacement
observations begin to deviate from the predictions (see panel (iii) of figure 9(a)) while
after 15TI the agreement deteriorates for both the interface displacement and velocity
measurements (see panel (iv) of figures 9(a) and 9(b)). Similar results were obtained
in experiments where the initial forcing was the same as for run IV but S (the
influence of rotation) was varied. In run V for example, both the observed interface
displacement and velocity profiles are in excellent agreement with the analytical
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Figure 10. Comparison between the experimental and analytical radial profiles of the geostro-
phic component for run V (S = 0.25, ε = 0.2) after (i) 6TI , (ii) 10TI , (iii) 15TI , (a) for the interface
displacement η, (b) for the azimuthal velocity ua . The solid line is the analytical solution while
the asterisks and diamonds are the measured interface displacements and azimuthal velocities
respectively. Error estimates were identical to those calculated in figure 9.

predictions after 6TI (see panel (i) of figures 10(a) and 10(b)), but after 10TI both
the interface displacement and velocity profiles exhibit slight deviations from the
analytical solution (see panel (ii) of figures 10(a) and 10(b)). The deviations become
pronounced after 15TI , and are particularly apparent in the velocity observations (see
panel (iii) of figure 10(a)).

In figure 11 we show results for run VIII, which was conducted at the same S

as run IV but with twice the initial forcing ε. The observations of both the interface
displacement and velocity are in excellent agreement with the predictions after 3TI

(compare panel (i) in figures 9 and 11). This agreement, however, deteriorates
noticeably after 6TI for both the interface displacement and velocity observations
(compare panel (ii) in figures 9 and 11) and becomes more pronounced for longer
time (see panels (iii) and (vi) in figure 11). In summary, the results in figures 9–11
suggest that as the value of ε =�H/H1 increases, the predictions of linear theory
increasingly overestimate the observed response, particularly in the displacement
field.

In figure 12 the experimental results are summarized with ε−1 defined in (5.2)
plotted against time. The dimensionless timescale for the establishment of the double
gyre (S−1) as well as the dimensionless dissipation timescale (τD) are also included in
figure 12. Experimental observations indicate that the geostrophic double gyre is
present after approximately S−1, although owing to the limitation of the filtering
technique used to obtain this result, this represents an upper bound for the transition
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Figure 11. Comparison between the experimental and analytical radial profiles of the geo-
strophic component for run VIII (S = 0.5, ε = 0.4) after (i) 3TI , (ii) 6TI , (iii) 10TI , (iv) 15TI ,
(a) for the interface displacement η, (b) for the azimuthal velocity ua . The solid line is the
analytical solution while the asterisks and diamonds are the measured interface displacements
and azimuthal velocities respectively. Error estimates were of the order of instrument sensitivity
(± 0.01 for the ultrasonic probes and ± 0.02 for the micro ADV).

from the initial condition (see figure 12). The time after which experimental observa-
tions depart from linear, inviscid theory is also shown in figure 12. This dividing
line is linearly proportional to ε−1 over the experimental programme with a slope
of approximately 1/2. The τD curve intersects this line for large ε−1, suggesting that
when 2ε−1 <τD the primary mechanism responsible for the observed departure is the
nonlinear advection of fluid columns, and when 2ε−1 > τD frictional dissipation is the
likely mechanism.

Using the timescales determined from figure 12, a strong forcing is defined as
2ε−1 < S−1 and 2ε−1 <τD , a moderate forcing as S−1 < 2ε−1 <τD , and a weak forcing
as S−1 <τD < 2ε−1. Note that for a strong forcing ε = O(1), which is beyond the
validity of the linear solution presented in § 4, so that only moderate and weak
forcings are considered during the experimental programme (see table 1).

In this way, four regimes can be identified in figure 12: a linear adjustment regime,
which can be sub-divided into two phases (see below), and two further regimes in
which either advective or dissipative effects dominate.

The linear adjustment regime is separated into a transition phase from the initial
condition to the geostrophically balanced double gyre (1 < τ < S−1), and a subsequent
continuation phase where the double gyre is sustained until advective (S−1 < τ < 2ε−1,
moderate forcing) or dissipative (S−1 <τ <τD , weak forcing) effects become important.
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Figure 12. The dimensionless nonlinear timescale ε−1 versus the temporal evolution of geo-
strophic double gyre observed in the experimental programme. The measured radial profiles
of interface displacement and velocity are qualitatively compared with the analytical solution.
A strong agreement for both interface displacement and velocity is represented by a triangle,
a strong agreement for one of the measured quantities is represented by a circle, while a weak
agreement for both is represented by a cross. The dotted line separates the linear phase into
two distinct regions and indicates the time after which the geostrophically balanced double
gyre is observed. The dashed line through the origin, which has a slope of approximately
1/2, indicates the time after which observations depart from linear, inviscid theory, while the
dash-dot line indicates the dissipation timescale τD . The solid vertical line at τ = 1 is the
dimensionless inertial period. Data from run I (S = 0.25, ε = 0.1), run IV (S = 0.5, ε = 0.2), run
VII (S = 0.75, ε = 0.4), and run IX (S = 1, ε = 0.8) of the experimental programme have been
used.

6. Discussion
The excellent agreement between (4.3) and the laboratory experiments during the

linear phase allows us to use the analytical solution with confidence to examine the
distribution of initial potential energy IPE (the energy in the initial unbalanced state)
between the geostrophic and fluctuating components during this period. Expressions
for the kinetic KE, potential PE, and total energy TGE residing in the geostrophic
component are derived from the analytical solution (see Appendix A for the details)
and are plotted in figure 13 as a function of the Burger number S. It is evident from
this plot that the distribution of IPE between geostrophic energy TGE and wave
energy TWE (where TWE= IPE − TGE) is dependent upon S. Similarly, the available
potential energy APE (where APE= IPE − PE) exhibits a functional dependence
on S with the ratio of geostrophic kinetic energy to available potential energy
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Figure 13. The energetics of the geostrophic component, as a function of S =R/rf , calculated
from (4.3) for an initial step height discontinuity (solid lines) and for an initial linear tilt of the
density interface (dashed lines) (Stocker & Imberger 2003). For a given value of S, the energy
in the geostrophic component (TGE) is given by the sum of the kinetic (KE) and potential
(PE) energy while the wave energy TWE is the difference between the initial potential energy
IPE and TGE. The ratio of geostrophic kinetic energy to available potential energy (APE)
asymptotically approaches the infinite domain limit of 1/3 (the horizontal dotted line) (Gill
1982) as S → 0. All quantities have been normalized by the initial potential energy.

asymptotically approaching the infinite domain limit of 1/3 noted by Gill (1982) as
S → 0. Comparison of the energetics calculated from the solution to the initial linear
interface tilt problem provided by Stocker & Imberger (2003) and (4.3) reveals that
the kinetic, potential, and total geostrophic energy, as well as the ratio of geostrophic
kinetic energy to available potential energy, exhibit a similar functional dependence on
S (see figure 13). The suggestion is that irrespective of the exact nature of the basin-
scale initial forcing, the response is characterized by a geostrophic double gyre plus a
fluctuating component with similar partitioning of energy among the components.

In the field an external disturbance such as a basin-scale surface wind stress
typically provides the forcing (e.g. Saggio & Imberger 1998; Antenucci & Imberger
2001). For lakes influenced by the Earth’s rotation, the response to a unidirectional,
basin-scale external wind forcing has been modelled numerically (Serruya, Hollan &
Bitsch 1984) and analytically (Stocker & Imberger 2003) and shown to consist of a
geostrophic double gyre and baroclinic basin-scale waves. Lake Kinneret (Israel) is
subject to a basin-scale wind forcing, and Herman (1989) noted that Landsat images
of a peridinium bloom bear a remarkable resemblance to the double gyre configura-
tion, while Antenucci & Imberger (2001) observed that the internal wave field was
dominated by Kelvin and Poincaré waves. The results of the laboratory experiment
are consistent with these field observations and are representative of the response to
a basin-scale wind forcing for large lakes influenced by the Earth’s rotation.
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Figure 14. The one-dimensional problem where the initial profile G(x) has a step height
discontinuity located at S−1

f = rf /R0 which is expressed as a function of S−1
0 = R0/R.
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Figure 15. The energy in the geostrophic component (TGE) as a function of S0 = αSf for
an initial step height discontinuity (see figure 14) where α = 1 (solid line), α =0.5 (dashed
line), α = 0.25 (dash-dot line), and α = 0.1 (dotted line). The vertical lines indicate the typical
value of S0 for Lake Kinneret (Israel), Lake Maracaibo (Venezuela), Lake Biwa (Japan), Lake
Taupo (New Zealand) and Lake Ontario (Canada) during the summer period (data taken from
Antenucci & Imberger (2001)). All quantities have been normalized by the initial potential
energy (IPE).

When the forcing scale rf is less than the basin scale R0, however, the geostrophic
response will not consist of a symmetric double gyre. Scaling rf and R0 with R

gives two Burger numbers: a Burger number based upon the scale of motion initially
introduced by the forcing, given by Sf = R/rf , and a Burger number associated
with the basin-scale motions present once the linear geostrophic evolution process
is complete, given by S0 = R/R0. Consider for example the one-dimensional problem
presented in figure 14, which is a finite domain analogue of the semi-infinite domain
study of van Heijst & Smeed (1986), where α = rf /R0 = S0/Sf . The energetics of the
geostrophic component for various values of α are presented in figure 15 and the
details of these calculations can be found in Appendix B. For the lower (S0 → 0)
and upper (S0 → ∞) limits, varying α does not change the energy in the geostrophic
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component. For intermediate values of S0 the dependence on α and, hence, on the
forcing scale rf is significant. A number of lakes influenced by the rotation of the
Earth have a value of S0 within this range during the summer months (see figure
15). Therefore, to obtain an accurate prediction of their response to wind-forcing, it
is important to know the characteristic horizontal lengthscale of the wind event.

Antenucci & Imberger (2001) determined that the Burger number S0 is a critical
parameter in the understanding of the partitioning of energy between potential and
kinetic forms of the fluctuating response. The importance of each Burger number
is now clear: Sf determines the partitioning of energy between the geostrophic and
fluctuating components of the response, while S0 determines the partitioning of wave
energy within the excited modes (Kelvin and Poincaré waves) of the fluctuating
response.

We conclude by noting that the laboratory experiments clearly illustrate that
analytical solutions are limited in their applicability when it comes to providing an
accurate description of the longer term dynamics and energetics of lakes influenced by
the rotation of the Earth. The long-time evolution of the geostrophic and fluctuating
components subject to nonlinear and dissipative effects will therefore be addressed in
subsequent studies.
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Appendix A. Linear baroclinic geostrophic adjustment in a circular domain
Defining the baroclinic velocity as u = u1 − u2 and neglecting terms of order ε in

(4.1) and (4.2) (Csanady 1967), it follows that

1

2π
uτ − k × u = (1 + δ)∇η, (A 1a)

− 1

2π
(1 + δ)ητ + ∇ · u =0, (A 1b)

in the absence of any external forcing. A single equation for η can be derived from
(A 1) (Gill 1976), namely

∇2η − 1

4π2
ηττ − η = −η0H (τ ), r � S−1, (A 2)

where H (τ ) is the Heaviside function and

η0 = − 1
2
sgn θ, −π < θ � π, (A 3)

is the initial displacement of the interface which, owing to the cylindrical geometry
of the tank, is best written in terms of polar coordinates, where r is the radial and θ

the angular coordinate.
Here only the steady, geostrophically adjusted solution to (A 2) is sought. Accord-

ingly

∇2η − η = −η0, (A 4)
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which is equivalent to the conservation of quasi-geostrophic potential vorticity, is
solved subject to the no-normal-flow boundary condition at the perimeter of the
tank, i.e. η(S−1) = 0. The solution of (A 4) is found by first writing η(r, θ) as a
complex Fourier series, i.e.

η =

n=∞∑
n=−∞

Rn(r) einθ . (A 5)

Note that

η0 = − 1
2
sgn θ =

∞∑
n=−∞

cn einθ , (A 6)

where

cn =
1

2π

∫ π

−π

( − 1
2
sgn θ

)
e−inθ dθ,

=

{
i/(πn), n odd,

0, n even.
(A 7)

Hence, substituting (A 5) and (A 6) into (A 4), the radial modes Rn(r) satisfy

d

dr

(
r
dRn

dr

)
−

(
1 +

n2

r2

)
rRn = rcn, (A 8)

and are such that Rn(S
−1) = 0 and bounded at r =0. Equation (A 8) is in Sturm–

Liouville form and its solution can expressed as

Rn(r) = cn

∫ S−1

0

ξgn(r, ξ ) dξ, (A 9)

where gn(r, ξ ) is the Green’s function for (A 8) which can be constructed according to
standard techniques (Boyce & DiPrima 1992). In particular,

gn(r, ξ ) =
In(ξ )Kn(S

−1)In(r)

In(S−1)
−

{
Kn(ξ )In(r), r < ξ

In(ξ )Kn(r), r > ξ,
(A 10)

where In and Kn are modified Bessel functions of order n. Substitution of (A 10) into
(A 9) and using the fact that gn = g−n finally gives the steady geostrophically adjusted
solution (4.3).

A.1. Linear energetics

Begin by considering a one-and-a-half-layer fluid. Working with the dimensionless
quantities defined previously, the potential energy PE is defined as

PE = 1
2

∫ ∫
η2 dA,

= 1
2

∫ S−1

0

∫ π

−π

η2r dθ dr, (A 11)

where S−1 is the dimensionless radius. Initially η = − (1/2) sgn θ and hence the initial
potential energy IPE= π(S−1)2/8. The geostrophic interface displacement η is given
by (4.3). Squaring η, substituting into (A 11), integrating and using the orthogonality
relation between trigonometric functions gives

PE =
2

π

∞∑
n=0

1

(2n + 1)2

∫ S−1

0

f 2
2n+1r dr. (A 12)
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The kinetic energy KE of the geostrophic response is

KE =
1

2

∫ ∫
|∇η|2 dA. (A 13)

While the expression (A 13) could be used to calculate KE, it proves simpler to derive
an alternative expression for KE. First, substitute the identity

∇η · ∇η = ∇ · (η∇η) − η∇2η (A 14)

into (A 13) and use Green’s theorem to write the first term as an integral of η∇η

around the boundary of the tank. This vanishes owing to the fact that η =0 on
r = S−1 (from (4.3)). Hence

KE = −1

2

∫ ∫
η∇2η dA. (A 15)

But the steady solution satisfies ∇2η − η = − (1/2) sgn θ which, upon substituting into
(A 15), and using (A 11) gives

KE = −PE +
1

4

∫ ∫
η sgn θ dA,

= −PE − 2

π

∞∑
n=0

1

(2n + 1)2

∫ S−1

0

f2n+1r dr, (A 16)

where the result ∫ π

−π

sin(2n + 1)θ sgn θ dθ =
4

2n + 1
(A 17)

has been used.
The velocity and length scales are the same for a two-layer fluid but now H = H1H2/

(H1 +H2) where H1 and H2 are the undisturbed depths of each of the two layers.
If, as in the experiments, H1 = H2 =H ∗ then H = H ∗/2. Thus, the kinetic energy in
each layer of the two-layer system, scales as KE ∼ U 2 ∼ g′H ∼ g′H ∗/2. Since there are
now two active layers the total kinetic energy scales like g′H ∗. Moreover, the PE is
the same in both two- and one-and-a-half-layer systems. Hence, the expressions and
relative behaviour of both the total PE and KE are the same in both systems.

Appendix B. The forcing lengthscale
In the following, the solution for the one-dimensional adjustment problem

d2η

dx2
− η = −G, (B 1a)

η(0) = η
(
2S−1

0

)
= 0, (B 1b)

where the forcing length scale rf and the basin radius R0 have been scaled with R

(see figure 14), is derived in terms of Fourier series, in order to illustrate the role of
the initial state G(x) on the final adjusted state η(x). The Fourier series expansion of
η satisfying the boundary conditions (B1b) is

η(x) =

∞∑
n=1

An sin knx, (B 2)
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where kn = nπ/2S−1
0 . The sine series expansion for the initial state G is

G(x) =

∞∑
n=1

Gn sin knx, (B 3)

where

Gn =
1

2S−1
0

∫ 2S−1
0

0

G(x) sin knx dx. (B 4)

Equations (B 2) and (B 3) are then substituted into the non-homogeneous Helmholtz
equation (B 1a), yielding the coefficients of the solution (B 2)

An =
Gn

1 + k2
n

. (B 5)

The appropriate expansion for the velocity field follows from

v(x) = ηx =

∞∑
n=1

knAn cos knx. (B 6)

Using the definition for the potential (PE) and kinetic (KE) energies, the total geos-
trophic energy is given by

TGE =

∞∑
n=1

(
1 + k2

n

)
A2

n

∞∑
n=1

G2
n

, (B 7)

which can calculated as a function of the initial state G(x) only.

REFERENCES

Antenucci, J. & Imberger, J. 2001 Energetics of long internal gravity waves in large lakes. Limnol.
Oceanogr. 46, 1760–1773.

Bendat, J. S. & Piersol, A. G. 2000 Random Data: Analysis and Measurement Procedures , 3rd edn.
Wiley.

Boss, E. & Thompson, L. 1995 Energetics of nonlinear geostrophic adjustment. J. Phys. Oceanogr.
25, 1521–1529.

Boyce, W. E. & DiPrima, R. C. 1992 Elementary Differential Equations and Boundary Value Problems ,
5th edn. Wiley.

Csanady, G. 1967 Large-scale motion in the great lakes. J. Geophys. Res. 72, 4151–4162.

Dorman, C. 1987 Possible role of gravity currents in Northern California’s coastal summer wind
reversals. J. Geophys. Res. 92, 1467–1488.

Gill, A. E. 1976 Adjustment under gravity in a rotating channel. J. Fluid Mech. 77, 603–621.

Gill, A. E. 1982 Atmosphere-Ocean Dynamics . Academic.

van Heijst, G. J. F. & Smeed, D. 1986 On the energetics of adjustment problems in stratified
rotating fluids. Ocean Model. 68, 1–3.

Helfrich, K. R., Kuo, A. C. & Pratt, L. J. 1999 Nonlinear Rossby adjustment in a channel.
J. Fluid Mech. 390, 187–222.

Herman, G. 1989 The time dependent response of Lake Kinneret to an applied wind stress and
hydraulic flow: Advection of suspended matter. Arch. Hydrobiol. 115, 41–57.

Hermann, A. J., Rhines, P. B. & Johnson, E. R. 1989 Nonlinear Rossby adjustment in a channel:
beyond Kelvin waves. J. Fluid Mech. 205, 469–502.

Lamb, S. H. 1932 Hydrodynamics . Dover.

Martinsen, E. & Weber, J. 1981 Frictional influences on internal Kelvin waves. Tellus 33, 402–410.



86 G. W. Wake, G. N. Ivey, J. Imberger, N. R. McDonald and R. Stocker

Middleton, J. F. 1987 Energetics of linear geostrophic adjustment. J. Phys. Oceanogr. 17, 735–740.

Ou, H. W. 1986 On the energy conversion during geostrophic adjustment. J. Phys. Oceanogr. 16,
2203–2204.

Rossby, C.-G. A. 1937 On the mutual adjustment of pressure and velocity distributions in certain
simple current systems. i. J. Mar. Res. 1, 15–28.

Rossby, C.-G. A. 1938 On the mutual adjustment of pressure and velocity distributions in certain
simple current systems. ii. J. Mar. Res. 1, 239–263.

Ruddick, B. R. & Shirtcliffe, T. G. L. 1979 Data for double diffusers: physical properties of
aqueous salt-sugar solutions. Deep-Sea Res. 26, 775–787.

Saggio, A. & Imberger, J. 1998 Internal wave weather in a stratified lake. Limnol. Oceanogr. 43,
1780–1795.

Serruya, S., Hollan, E. & Bitsch, B. 1984 Steady winter circulations in Lake Constance and
Kinneret driven by wind and main tributaries. Arch. Hydrobiol. 1, 33–110.

Stern, M. E. & Helfrich, K. R. 2002 Propagation of a finite-amplitude potential vorticity front
along the wall of a stratified fluid. J. Fluid Mech. 468, 179–204.

Stocker, R. & Imberger, J. 2003 Energy partitioning and horizontal dispersion in the surface layer
of a stratified lake. J. Phys. Oceanogr 33, 512–529.


