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ABSTRACT

The response of a stratified rotating basin to the release of a linearly tilted interface is derived. This case is
compared with a uniformly forced basin in the two limits when the duration of the forcing is much greater than
the period of the dominant internal waves and when it is much smaller. Energy partitioning is studied as a
function of the Burger number S (relative importance of stratification versus rotation), showing the dominance
of a geostrophic component over the wave field for low S. Trajectories are integrated numerically, revealing the
Stokes drift of the waves to be always cyclonic. Transport properties are classified in terms of S and the
Wedderburn number W (relative importance of the disturbance versus stratification). The geostrophic flow is the
main source of advection, but only the waves allow particles to break the barrier to transport between the two
geostrophic gyres, ultimately leading to stretching and folding. For low values of W, advection can become
chaotic. Conservation of potential vorticity explains the difference in transport properties between the forced
cases and the initial tilt release. A transition time between spreading dominated by turbulence and that dominated
by large-scale motions is derived as a function of the initial size of a cloud. The results show that spreading is
mainly due to turbulence for weak forcing, small time, and small clouds; for stronger forcing, larger time, or
larger clouds the effect of large-scale motions can be dominant.

1. Introduction

It has been established that the energy path transfer-
ring mechanical energy from the wind down to the
smallest scales of motion in a stratified lake begins with
the baroclinic basin-scale motions (Imberger 1998).
These are influenced by the earth’s rotation even in ba-
sins of medium size (Antenucci and Imberger 2001).
Their spatial structure is best described in terms of the
Burger number S, which accounts for the relative influ-
ence of stratification and rotation (Antenucci and Im-
berger 2001), and the Wedderburn number W, which
accounts for the severity of the forcing or initial dis-
turbance with respect to the stratification (Spigel and
Imberger 1980). The Burger number is defined here as
S 5 c/ fr0, where c is the nonrotational baroclinic phase
speed, f the inertial frequency and r0 the horizontal
dimension of the basin. Sometimes, the square of this
expression is used (Pedlosky 1979). Antenucci and Im-

* Centre for Water Research Reference Number ED 1625-RS.

Corresponding author address: Roman Stocker, Department of Ap-
plied Mathematics, MIT, 2-339, 77 Massachusetts Ave., Cambridge,
MA 02139.
E-mail: stocker@math.mit.edu

berger (2001) compute ratios of potential to kinetic en-
ergy for the dominant natural modes of a circular basin
as a function of S. However, the question of how the
energy due to an initial disturbance or to a given forcing
is partitioned among the different modes has not been
addressed. It is the answer to this question that ulti-
mately determines the ratio of potential to kinetic energy
in the basin. In particular, the response of a rotating
system to external disturbances includes a geostrophic
flow (Veronis 1956; Csanady 1968; Gill 1982). Its im-
portance with respect to the wave field has been eval-
uated for an unbounded ocean by Veronis (1956), who
found that the amount of energy entering the geostrophic
component increases with the duration of the wind if
the total momentum is kept constant. This result will
be extended to closed basins.

When a wind blows over a stratified nonrotating lake,
an interface tilt is usually generated, causing the ther-
mocline to rise upwind and fall downwind (Monismith
1986). When rotation is negligible (S → `) this ad-
justment happens over a time depending on the size of
the basin (Monismith 1985), typically of the order of
10 h for medium size lakes like Lake Kinneret (Israel)
(Serruya et al. 1984). When the wind stops blowing, the
interface tilt is released, resulting in a seiching motion.
The solution for a uniform, constant wind imposed sud-
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denly over a circular homogeneous rotating basin with
flat bottom has been given by Csanady (1968) for the
case of a wind lasting much longer than the period of
the dominant internal waves (this forced problem will
be denoted hereinafter as FP). In the first part of this
paper Csanady’s solution is extended to a wind duration
much shorter than the dominant internal wave’s period.
An analytical solution to the initial boundary value
problem associated with the evolution of a surface tilt
in a rotating lake is also derived. The linear initial tilt
contains all the Fourier components of the basin’s re-
sponse, therefore representing a general and yet simple
condition to be investigated. Furthermore, in a nonro-
tating lake excited by surface wind forcing the ther-
mocline assumes a linear shape after one-quarter of the
period of the gravest internal wave (Spigel and Imberger
1980). Both the forced and the initial boundary value
problems (IBVP) are solved for a homogeneous basin,
but are readily applicable to stratified problems (with
layers of uniform density) by way of normal mode de-
composition (Csanady 1967, 1982). The study of energy
partitioning among the components of the solution re-
veals the importance of a geostrophic component, which
in the IBVP dominates over the wave field as the Burger
number decreases, while it has the same energy as the
wave field for all Burger numbers in the FP. This result
is compared to that of Veronis (1956). While the variable
depth case has been studied by Birchfield and Hickie
(1977) and Huang and Saylor (1982) for a homogeneous
basin, it appears difficult to extend these results to strat-
ified conditions.

The basin-scale motions are responsible for basinwide
redistribution of nutrients, pollutants, and sediments
(Ostrovsky et al. 1996; Imberger 1998). This is partic-
ularly true for the surface layer of a stratified lake, where
most of the biological processes of the lake occur. De-
spite its importance, little is known about the basic
mechanisms governing horizontal transport and disper-
sion due to basin-scale motions in the surface layer.

Field dispersion studies in a range of environments
usually lump all mechanisms responsible for the spread-
ing of a cloud into one empirical law relating the rate
of growth of its area (or apparent diffusivity) to a char-
acteristic length scale of the cloud (Okubo 1971; Lawr-
ence et al. 1995). Csanady (1963) finds no correlation
whatsoever between diffusion patterns and meteorolog-
ical data. However, he also observes that ‘‘there are good
days and bad days for diffusion.’’ While the outcomes
of such investigations are of considerable practical use-
fulness (Lawrence et al. 1995), great care is needed
when they are applied to situations different than those
for which they were gathered (Fischer et al. 1979), since
misinterpretations of the physical processes causing dis-
persion can arise. This has been shown by Murthy
(1975), who found that convergence and divergence of
the mean flow field can act as antidiffusive agents un-
doing the dispersive action of turbulence. Assigning the
bulk observed growth of a cloud to turbulent dispersion

would lead to a vast underestimate of eddy diffusivity.
For confined water bodies like lakes, in particular, this
lack of distinction between mean flow effects and tur-
bulence makes it difficult to generalize dispersion ex-
periment results. List et al. (1990) point out the im-
portance of regarding turbulent diffusion as an ensemble
average property, due to the doubtful applicability of
dispersion theory to single realizations of a dispersion
experiment. We suggest that the variability in single
realizations is a result not only of the statistical vari-
ability of turbulent dispersion, but also of the structure
of the underlying velocity field. Csanady (1966) already
mentioned this, suggesting that variations in dispersion
coefficients can be predominantly linked to spatial and
temporal structures of the currents, in particular to their
degree of nonuniformity in space and time, and not
necessarily to a change in the horizontal eddy structure.
This suggests the importance of mesoscale motions not
only for advective but also for dispersive processes and
points to the necessity of a distinction between different
dispersion mechanisms and a quantification of the rel-
ative importance of each of them.

The dispersion caused by the mean flow can be prof-
itably studied with the tools of dynamical systems, con-
sidering the process as completely deterministic. The
existence of unsteady flows whose Eulerian velocity
field is deterministic and smooth but nevertheless able
to generate complex patterns in terms of particle tra-
jectories is well established (Lichtenberg and Lieberman
1983). Linearization of the equations of motion pre-
cludes chaotic behavior of the Eulerian velocity field
(hard chaos). However, the most intriguing aspect of
chaotic advection is the complex stretching and folding
of material lines due to the nonlinearity in the integra-
tion of trajectories (weak chaos) (Cox et al. 1990). Aref
(1984) coined the term chaotic advection to describe
this behavior. By sharpening gradients of concentration
of a tracer cloud and effectively increasing its exchange
area with the surrounding fluid, chaotic advection
strongly favors mixing. The latter is actually achieved
through smaller scale processes supported by turbulent
dispersion.

The fact that chaotic advection in time periodic flows
can be an effective horizontal dispersion mechanism
without recourse to turbulence has already been rec-
ognized in the estuarine literature (Zimmerman 1986;
Ridderinkhof and Zimmerman 1992). Zimmerman
(1986) considered the tidal velocity field as composed
of a uniform, time periodic flow and a spatially varying
residual flow. He ascribed the large dispersion coeffi-
cients often observed in estuaries to their strong geo-
metrical complexity, but also recognized that, the flow
being time dependent, a single spatial mode perturbing
the uniform current would be sufficient to produce cha-
otic advection. In the absence of complex topography,
the perturbing action of a mean flow leading to chaotic
advection can be exerted by waves, as shown for ex-
ample by Cox et al. (1990) and Binson (1997). In these
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latter studies, however, only the kinematics were in-
cluded, the simplified velocity fields being given a
priori. The second part of this paper will extend these
considerations to the internal waves developing in a
rotating basin. While conserving the simplicity of a lim-
ited number (one or two) of perturbing modes, the dy-
namical aspect of the problem will be retained by mak-
ing use of the Eulerian velocity derived analytically.
Poincaré maps and local Lyapunov exponents are in-
troduced to analyze transport properties of the geo-
strophic component perturbed by the internal waves.
The evolution of clouds of particles is studied. A tran-
sition time between chaotic advection dominated dis-
persion and turbulence dominated dispersion is derived.

2. The fundamental solution

The solution for a flat bottomed, circular, rotating
basin, filled with a homogeneous nonviscous liquid sub-
ject to a linear initial tilt of the surface is derived. To
deal with the more general forced case, an impulsively
started wind stress acting on the surface is included.
The linearized, vertically integrated equations of motion
and conservation of mass in polar coordinates are

]u ]h
212 y 5 2 1 SW cosq (1a)F]t ]r

]y ]h
211 u 5 2 2 SW sinq (1b)F]t r]q

u ]u ]y ]h
1 1 5 2 , (1c)

r ]r r]q ]t

where h is the surface displacement, made dimension-
less by the depth of the basin H; u, y are vertically
averaged velocities in the radial and tangential direction,
respectively, made dimensionless by the nonrotational
phase speed c 5 (gH)1/2, where g is the acceleration of
gravity; t is time made dimensionless by the inertial
frequency f . The radial coordinate has been made di-
mensionless by the Rossby radius of deformation R 5
c/ f 5 r0S (Gill 1982), where r0 is the radius of the
basin. The forcing term F acts along the direction q 5
0 and is a step function in time:

0, t , 0
F(t) 5 (2)5F, t $ 0.

A Wedderburn number (Spigel and Imberger 1980)
for the forcing can be defined as WF 5 gH 2/Fr0. The
initial condition consists of a linear surface tilt with
slope C and zero velocity. In dimensionless variables

21h(r, q, 0) [ h 5 Cr SH r cosq0 0

215 SW r cosq (3a)C

u(r, q, 0) 5 y(r, q, 0) 5 0, (3b)

where a second Wedderburn number WC 5 HC21 for21r 0

the initial tilt has been introduced. Both Wedderburn
numbers are defined here for a homogeneous basin and
will be later extended to the stratified case. Since ve-
locities have been vertically integrated over the depth
of the fluid, the only remaining boundary condition pre-
scribes zero radial velocity at the shores, u(S21, q, t)
5 0.

The general solution including a linear initial tilt and
a sudden constant forcing, derived in the appendix, is

21 21n(r, q, t) 5 (W Q 2 W Q ) cosqC C F F

`

21 212 (W 2 W ) a D A (4a)OC F k k k
k51

21 21u(r, q, t) 5 S(W 2 W )C F

`A 1 A 2 s D0 k k k3 1 2 sinq 2 a EO k k 21 2[ ]rS rS 1 2 sk51 k

(4b)
21 21y(r, q, t) 5 S(W 2 W )C F

`D 1 D 2 s A0 k k k3 1 2 cosq 2 a D ,O k k 21 2[ ]rS rS 1 2 sk51 k

(4c)

where

Q 5 rS 2 A (5)C 0

Q 5 2A (6)F 0

D 5 cos(q 2 s t) (7)k k

E 5 sin(q 2 s t), (8)k k

and the remaining notation is defined in the appendix.
The unforced IBVP is recovered when WF → `. The
solution for the FP by Csanady (1968), corrected by
Birchfield (1969), is recovered when WC → `. Also of
interest is the limit of a uniform stormlike wind blowing
for a time much shorter than the dominant natural modes
(hereafter denoted by IP). An idealized wind in the form
of a single impulse can be mathematically represented
by Dirac’s delta function. The solution can be found by
superimposing two oppositely blowing constant winds
starting a time dt apart, then letting dt → 0 while keep-
ing the amount of momentum transferred Md 5 Fdt
constant. Alternatively, one can take the time derivative
of the FP solution. The solution is recovered from Eq.
(4) by considering only the forced part (WC → `), sub-
stituting Eqs. (6), (7), and (8) with

Q 5 0 (9)F

D 5 2s sin(q 2 s t) (10)k k k

E 5 s cos(q 2 s t), (11)k k k

and redefining the forcing Wedderburn number as WF

5 gH 2/Md fr0.
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FIG. 1. Instantaneous displacement and velocity field due to the
geostrophic component, the Kelvin wave, and the Poincaré wave
arising from the IBVP for S 5 0.1 and S 5 0.66.

FIG. 2. Geostrophic displacement field due to the FP for (a) S 5
0.1 and (b) S 5 0.66.

3. The dominant components of the circulation

a. The wave field

The time-independent term on the rhs of Eq. (4) rep-
resents a geostrophic component and the series extend-
ing over the infinite natural modes of the basin repre-
sents cyclonic and anticyclonic progressive waves. Tra-
ditionally, waves with | sk | , 1 have been called Kelvin
waves, while those with | sk | . 1 have been called
Poincaré waves. According to this definition, the num-
ber of Poincaré waves is always infinite. For S ,
1/ one single Kelvin wave exists, while for S .Ï2
1/ there is none (Lamb 1932). However, since theÏ2
energetic properties associated with the lowest mode
wave change smoothly across the boundary | sk | 5 1,
as will be seen in section 3b, and the direction of rotation
remains cyclonic, we will retain the name Kelvin wave
for the lowest mode also for S . 1/ . The term Poin-Ï2
caré wave will be reserved in the following for the
lowest frequency Poincaré wave. Their natural frequen-
cies can be found through the following fitted relations
for 0.1 , S , 2.0:

4 3 2s 5 0.081 56S 2 0.442 65S 1 0.901 16S1

1 0.970 33S 2 0.001 206 (12a)

4 3 2s 5 20.173 27S 1 0.879 78S 2 1.625 71S2

2 0.474 32S 2 0.960 354 (12b)

for the Kelvin wave and first Poincaré wave, respec-

tively. Since the initial condition is an azimuthal mode
one displacement and the forcing is uniform in space,
all waves have azimuthal mode one (Csanady 1968) and
only their radial structure differs, as described by Ak and
Dk: thus, they can be called radial modes. All radial
modes are excited both in the IBVP, as the linear tilt
cannot be decomposed in a finite number of natural
wavelike modes, and in the FP, as the wind starts im-
pulsively. For the IBVP, Fig. 1 shows displacements and
velocities of the Kelvin wave and the first Poincaré wave
for two values of the Burger number.

Since the influence of the Kelvin wave extends to a
distance from the shore comparable to the Rossby radius
of deformation, when S is small the Kelvin wave be-
comes a coastal jet (Csanady 1967), with almost neg-
ligible radial velocities. The Poincaré wave, on the other
hand, affects predominantly the center of the lake and
is characterized by a larger radial velocity component.
These considerations also hold for the wave field in the
FP. The latter differs from the IBVP only with respect
to geostrophic displacements, as shown by QC ± QF,
from Eqs. (5) and (6). In the IBVP streamlines of the
geostrophic flow follow lines of constant surface ele-
vation since no forcing is present (Fig. 1). In the FP
(Fig. 2), when rotation is unimportant, the geostrophic
displacements reduce to a linear setup, while the re-
sponse is pushed to the boundaries when rotation is
dominant.

Since no friction has been included in the analysis,
both the stationary and the infinite set of wavelike com-
ponents do not decay with time. Thus, the present so-
lution can be considered to describe the wave field in
a real basin for a time proportional to the observed
lifetime of internal waves, which is of the order of sev-
eral days (Mortimer 1952; Ivey and Maxworthy 1992;
Antenucci and Imberger 2001). This, however, does not
necessarily apply to the geostrophic component, which
could be substantially longer lived than the waves.

b. Energy partitioning

Antenucci and Imberger (2001) compute ratios of po-
tential to kinetic energy for the dominant natural modes
of a circular rotating basin as a function of the Burger
number. Their analysis can be generalized to the present
solutions, which include the geostrophic circulation, al-
lowing the partitioning of energy to be determined as
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a function of the initial condition or forcing. Because
of the circular symmetry of the basin, each radial mode
preserves its shape in time. This is not true, for instance,
for an elliptic basin (Antenucci and Imberger 2001) and

implies that for each mode the energy integrated over
the basin is constant and can be computed for example
at time zero. Thus, the potential and kinetic energies of
the kth radial mode are

21 21 212p S 11h 2p S 2p Sk,0 rg rg
2 2PE 5 rgz dzr dr dq 5 (1 1 h ) r dr dq 5 h r dr dq (13)k E E E E E k,0 E E k,02 20 0 0 0 0 0 0

21 212p S 11h 2p Sk,0 r r
2 2 2 2KE 5 (u 1 y ) dzr dr dq 5 (u 1 y )r dr dq, (14)k E E E k,0 k,0 E E k,0 k,02 20 0 0 0 0

FIG. 3. Partitioning of energy among the Kelvin wave, Poincaré wave, and geostrophic component of the solution to the IBVP as a function
of the Burger number S. For each component, the dark gray region represents radial kinetic energy, the light gray region is azimuthal kinetic
energy, and the white region is potential energy. Energies are normalized by the initial potential energy. Note that the sum of the energies of
the three components is very close to 1. The thick dotted line represents the total energy for the FP, for which all other lines apply unchanged.

where hk,0, uk,0, and y k,0 are the displacements and ve-
locities of the kth radial mode at time zero and k 5 0
can be thought of as the geostrophic component. The
background potential energy has been neglected and the
integral of hk,0 vanishes because of volume conserva-
tion. In Fig. 3, the distribution of energies among the
dominant components of the solution to the IBVP (geo-
strophic component, Kelvin wave, and Poincaré wave)
is represented as a function of the Burger number.

Energies are normalized by the potential energy of
the initial tilt and higher modes are negligible for all

values of S. The partitioning of energy into potential
and kinetic is also shown for each component. A further
distinction of the kinetic energy in radial and azimuthal
is made since this gives an indication of the relative
importance of cross-shore versus alongshore velocities.

The rotationless case is recovered from Eq. (4) when
S → `. For all values of WC and WF, the geostrophic
velocity field vanishes since in (4) limS→` A0 5 limS→`

D0 5 rS (Abramowitz and Stegun 1965). The equiva-
lence between kinetic and potential energy (Gill 1982)
is recovered (Figs. 3 and 4).
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FIG. 4. Kinetic energy of the Kelvin wave, the Poincaré wave, the
geostrophic component, and their sum (‘‘Total’’) for the IBVP as a
function of the Burger number S. Energies are normalized by the
initial potential energy.

FIG. 5. Total energy of the geostrophic component (TEg) normal-
ized by the total energy of the response (TE) as a function of the
Burger number S for the IBVP and the FP. The IBVP closely satisfies
the relation TEg/TE 5 e24S.

FIG. 6. Ratio of the total energy of the Kelvin wave to the total
energy of the Poincaré wave as a function of the Burger number S.

The wave field reduces to simple seiching because
the Kelvin and Poincaré wave amplitudes become equal
and their frequencies equal and opposite. In the FP the
geostrophic displacements become linear for large S
(Fig. 2), reducing to the rotationless linear setup (Mon-
ismith 1985) with no associated circulation (Fig. 3). Half
of the total energy goes into wavelike motions and half
into the geostrophic motion (Fig. 5).

This latter consideration applies to the FP for all val-
ues of S. For the IBVP, on the other hand, the geo-
strophic component vanishes altogether as S → `. A
best fit from Fig. 5 reveals that the total geostrophic
energy TEg, normalized by the total energy in the re-
sponse TE, varies with the Burger number as TEg/TE
5 e24S. Indeed, in the IBVP the geostrophic displace-
ments adjust so as to conserve the energy provided by
the initial tilt.

When rotation is important, the equilibrium position
is not the horizontal plane anymore and this involves
the existence of a geostrophic circulation. The presence
of the geostrophic circulation has been detected at
steady state in numerical simulations of homogeneous
wind-forced Lake Kinneret by Serruya et al. (1984) and
Herman (1989). Both the presence of the two gyres
forming the geostrophic circulation (Fig. 2) and their
orientation are in good agreement with the present re-
sults (see, e.g., Fig. 4 of Serruya et al. 1984). As reported
by Herman (1989), Landsat images of a peridinium
bloom in Lake Kinneret show a remarkable resemblance
to the two-gyre configuration. The latter also possibly
plays a role in the sediment redistribution in the lake
(Herman 1989).

When the response is governed by rotation (S → 0),
the contribution of the Poincaré wave becomes negli-
gible (Fig. 6) and the response is dominated by the
Kelvin wave and the geostrophic component. The fact
that overall kinetic energy vanishes (Fig. 4) agrees with
the general conclusion by Gill (1982) that it is difficult
to convert potential to kinetic energy in rotating flows.



518 VOLUME 33J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

For the FP, as S → 0, the total energy in the response
tends to zero, but the equivalence between geostrophic
and ageostrophic energy remains (Fig. 5).

At intermediate value of S, when there is a balance
between stratification and rotation, both the geostrophic
circulation and the two waves are important and the
kinetic energy becomes larger than the potential energy
(Fig. 4). The spatial scales of the two waves become
comparable, since the Rossby radius is comparable with
the radius of the basin, implying the influence of the
Kelvin wave extends to the interior of the lake.

c. A very short wind

Equation (4), together with Eqs. (9), (10), and (11),
shows that brief storm events do not generate any geo-
strophic motion. It is concluded that the geostrophic com-
ponent is present only during times when the wind is
actually blowing. This agrees qualitatively with the en-
ergy partition between geostrophic and wavelike motions
for an unbounded ocean (Veronis 1956), where the
amount of energy in the geostrophic component increases
with the duration of the wind if the total momentum is
constant: for an impulsive wind, a wind lasting half an
inertial period and a wind lasting one inertial period, the
energy in the geostrophic component is 26%, 51%, and
91%, respectively, of the total energy (Veronis 1956).

All natural modes are excited [Eqs. (10) and (11)],
as previously, but now amplified in proportion to their
frequency. Since Poincaré waves have higher frequen-
cies than Kelvin waves, the importance of the former
with respect to the latter is increased when the wind
duration becomes shorter. This, together with the stron-
ger radial velocities exhibited by Poincaré waves (Fig.
4), implies that shorter winds favor on- and offshore
transport.

d. Conservation of potential vorticity

Despite the fact that the velocity field is the same for
the IBVP and the FP, as long as WC and WF are equal
and opposite, the apparently minor modification in the
geostrophic displacements really reflects a deep differ-
ence in their long-term transport properties, whose im-
plications can be elegantly interpreted in terms of po-
tential vorticity conservation. The potential vorticity P
for a shallow homogeneous layer of depth H is defined
as (Gill 1982)

f 1 z
P 5 , (15)

H 1 h

where

]u ]uy xz 5 2 (16)
]x ]y

is the relative vorticity and (ux, uy) are the Cartesian
components of velocity. In geophysical flows potential

vorticity is conserved by each fluid column (Gill 1982),
resulting in

DP ]P ]P ]P
5 1 u 1 u 5 0. (17)x yDt ]t ]x ]y

This is true also for the uniformly forced problems con-
sidered here since the wind stress has zero curl. It is
easy to show that the linear velocity field in Eq. (1)
satisfies ]P/]t 5 0. In both forced problems (FP and
IP), the nonlinear terms representing advection of po-
tential vorticity in Eq. (17), are identically equal to zero
since the spatial gradients of potential vorticity are zero.
This implies that the linear velocity field satisfies the
nonlinear evolution equation of potential vorticity [Eq.
(17)]. The same is not true for the IBVP, where the
initial tilt provides a background potential vorticity gra-
dient ]P/]x ± 0. Thus, advection of potential vorticity
is not zero, but only a higher-order contribution with
respect to the local rate of change ]P/]t. As soon as a
fluid column moves, it changes relative vorticity in order
to conserve potential vorticity. Relative vorticity then
gives rise to a velocity field that is usually in the form
of a swirling flow or eddy. There appears to be no simple
analytical way of determining this velocity field from
the initial linear potential vorticity distribution. The
mechanism described here has been nicely captured in
laboratory experiments by Wake and coworkers, who
observed the formation of eddies after a time on the
order of 15 inertial periods (G. W. Wake 2001, personal
communication).

e. Extension of the solution to two layers

The homogeneous case is readily extended to a two-
or three-layer stepwise stratification by normal mode
decomposition. Csanady (1967, 1982) gives expressions
for the required transformation matrices. The concept
underlying normal mode decomposition is that, by tak-
ing a suitable combination of the variables for the n
layer problem, this can be transformed in n independent
problems, each characterized by the same equations as
above but with separate Burger numbers. The combi-
nation of layer variables is called a normal mode var-
iable. The focus being on surface layer velocities and
interface displacements in a two-layer case and since
the effect of normal mode two is dominant, the relevant
transformations have been carried out explicitly for this
case. Let hj and rj denote the depth and density, re-
spectively, of the jth layer, where j 5 1 denotes the
upper layer and j 5 2 the lower layer. Further, H 5 h1

1 h2 and « 5 1 2 r1/r2. It can be shown that Eq. (4)
can be used with u, y representing surface layer veloc-
ities and 2h representing interface displacements. Here
S is replaced by

1
S 5 Ïg«h h /H, (18)2 1 2fr0

where the index 2 points out that only the effect of
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FIG. 7. Particle paths due to (a) the Kelvin wave and (b) the Poincaré wave generated from the IBVP for S 5
0.66 and W 5 1.4. Full circles indicate starting positions and trajectories are plotted for 4.4 inertial periods.

normal mode two is considered, and the two-layer ver-
sion of the Wedderburn numbers is used:

h1W 5 (19)C C r2 0

2«gh1W 5 . (20)F Fr0

It follows that velocities in the surface layer scale as
S2W21 and interface displacements as W21. Note that
upwelling occurs for W , 1 (Spigel and Imberger 1980).

4. Particle trajectories

Armed with the analytical expression for the Eulerian
velocity field derived in section 2, we are now in the
position to determine the trajectories of particles and to
use them, in the following sections, to study the spread-
ing properties of the flow and to compare them with
turbulent dispersion.

The trajectory x(t) of a passive particle starting at x*
in a Eulerian velocity field f(x, t) satisfies

ẋ 5 f(x, t) (21a)

x(0) 5 x*, (21b)

where the dot denotes differentiation with respect to
time. When f is a function of x, Eq. (21) is a nonlinear
differential equation. Using polar coordinates x 5 (r,
q), it follows that f 5 (u, y/r) and Eq. (21) becomes

ṙ 5 u (22a)

q̇ 5 y /r (22b)

[r(0), q(0)] 5 (r*, q*). (22c)

Using the Eulerian velocity field (u, y) from Eq. (4),
trajectories in Eq. (22) can be integrated numerically
with an adaptive time step Runge–Kutta–Fehlberg al-
gorithm (RKF45: see e.g., Maron and Lopez 1991),
which satisfies a user-defined precision at each step. This

is accomplished by adjusting the time step as a function
of the difference between two Runge–Kutta schemes of
order four and five, respectively, and allows the achieve-
ment of a prescribed precision on the integration of a
trajectory over a given period while minimizing com-
putational time.

Trajectories due to a Kelvin wave and a Poincaré
wave are shown in Fig. 7 for the IBVP (or, equivalently,
for the FP) and in Fig. 8 for the IP. According to their
direction of propagation, the waves are seen to cause
cyclonic (Kelvin wave) or anticyclonic loops (Poincaré
wave) in the trajectories. While to first-order linear wave
theory predicts zero mass transport, Longuet-Higgins
(1969) showed that to second order the Lagrangian drift
is given by the sum of the second-order Eulerian ve-
locity and the Stokes drift. Wunsch (1973) showed, in
particular for a Kelvin wave in a straight channel, that
the second-order Eulerian velocity is in fact zero, leav-
ing the Stokes drift as the sole contribution. The dif-
ference between a straight channel and a circular basin
is due to Poincaré waves. While in a straight channel
they are nearly standing and therefore produce no sig-
nificant net drift (Wunsch 1973), in a circular basin they
appear as progressive waves, whose Stokes drift can be
important. This is particularly important when the du-
ration of the wind is short compared to the dominant
internal waves (Fig. 8), as in the IP case. Interestingly,
due to the different radial structure of y of Kelvin and
Poincaré waves (Fig. 1) and their opposite direction of
propagation, the Stokes drift ends up being cyclonic for
both waves.

If the geostrophic flow alone is considered, Eq. (21)
becomes an autonomous nonlinear differential equation.
Particles follow closed streamlines (Fig. 1) and no dis-
persion is possible. Dispersion can occur when unsteady
perturbations are added. In this case the topology of the
steady flow determines the spatial variability of disper-
sion (Binson 1997). For this reason it is of interest to
study the structure of the geostrophic flow. Four fixed
points can be found:
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FIG. 8. Particle paths due to (a) the Kelvin wave and (b) the Poincaré wave generated from the IP for S 5 0.66
and W 5 0.4. Full circles indicate starting positions and trajectories are plotted for 4.4 inertial periods.

FIG. 9. Distance rc of the elliptic points of the geostrophic flow
from the center of the basin normalized by the size of the basin S21,
as a function of the Burger number S. When S → `, Src → 1/ .Ï3

21 21(r, q) 5 (S , p/2), (S , 3p/2), (r , 0),c

(r , p), (23)c

where rc satisfies (D0 2 rS) 5 0. Their stability isr5rc

determined by the eigenvalues of the Jacobian matrix
of the flow, which have been computed analytically
making use of the frequency equation (A20). For (rc,
0) and (rc, p) the eigenvalues are purely imaginary com-
plex conjugate numbers, indicating these equilibrium
points are stable: they are elliptic points. As will be seen
by the study of Poincaré maps in section 5, elliptic
points are surrounded by regions of regular motion even
for very large forcing. The variation of rc with the Bur-
ger number is given in Fig. 9. For S → 0 the elliptic

points are squeezed toward the shores, while for S →
` a two-term Taylor expansion of the order zero and
one modified Bessel functions for small arguments S21

(Abramowitz and Stegun 1965) shows that Src → 1/
. The fixed points at (S21, p/2) and (S21, 3p/2), onÏ3

the other hand, have real distinct eigenvalues: they are
unstable equilibria or hyperbolic points. Around them
the effects of unsteady perturbations are felt first. It is
interesting to note that the sediment redistribution pat-
terns in Lake Kinneret show regions of sediment re-
moval coinciding with the hyperbolic points of the geo-
strophic flow associated with the predominant westerly
wind (Herman 1989). The streamlines connecting the
hyperbolic points are called separatrices: for the circular
basin they coincide with the north–south axis and the
entire perimeter.

5. Dispersion properties of the mean flow

In this section the dispersion properties of the flow
field Eq. (4) are investigated for the FP (WC → `, W
5 WF) and the IBVP (WF → `, W 5 WC). Since the
linear velocity field is identical in the two cases provided
WF and WC are equal and opposite (section 2), the trans-
port properties will be the same. Here the problem will
be approached from the point of view of chaotic ad-
vection (Aref 1984). The Poincaré-Bendixon theorem
(Lichtenberg and Lieberman 1983) excludes the pos-
sibility of chaotic advection for two-dimensional dif-
ferential systems that can be reduced to rest by a Gal-
ilean transformation, which is the case for the geo-
strophic flow or a single wave (Cox et al. 1990). How-
ever, the superposition of the geostrophic flow and a
wave represents an unsteady two-dimensional flow, for
which chaotic advection is in general possible (Binson
1996). Since this flow is periodic in time, Poincaré maps
can be employed to study particle’s orbits. For the pre-
sent two-dimensional flow, where phase space and phys-
ical space coincide (Binson 1997), drawing Poincaré
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FIG. 10. Poincaré maps for the FP, for S 5 0.66 and W 5 (a) 0.16, (b) 0.10, (c) 0.07, and (d) 0.06. Only the
geostrophic circulation and the Kelvin wave are considered. Eleven particles are released on the x axis and their
position is drawn at time intervals equal to the Kelvin wave’s period, for 800 periods.

maps involves releasing a number of particles and taking
snapshots of their position at time intervals equal to the
period of the wave, thus reducing the continuous flow
to a discrete map. This has to be done for a large number
of forcing periods (800 in our case) in order to detail
the structure underlying the flow, but does not imply
that the interpretation of this structure only applies to
such large timescales.

Figure 10 shows Poincaré maps of the geostrophic
flow perturbed by the Kelvin wave for several values
of W. While W for these cases is so low as to invalidate
the linearization in Eq. (1), these Poincaré maps are
briefly discussed in order to understand the asymptotic
effect of a perturbation on the geostrophic flow. At first,
the Kelvin wave creates an asymmetry in the two gyres
(Fig. 10a), reinforcing the cyclonic eastern gyre and
squeezing the anticyclonic one toward the western
shore. This causes a shift in the hyperbolic points, where

chaotic advection first arises. The separatrices break up
and trajectories tend to fill an area in the Poincaré map.
This area grows as W decreases but does not affect the
regions surrounding the elliptic points, which preserve
their regularity. The structures that form between cha-
otic and regular regions are called KAM curves (Ottino
1989) and are first evident for W 5 0.10 (Fig. 10b).
Islands of regularity survive inside newly formed se-
paratrices, which in turn break up as W decreases. KAM
curves are typical of Hamiltonian systems, which pre-
serve volume in phase space (Lichtenberg and Lieber-
man 1983). The present flow is Hamiltonian on average
since the divergence of the velocity field in Eq. (4)
vanishes only if averaged over the Kelvin wave’s period.

At realistic values of W (ø1) the perturbation induced
by the Kelvin wave appears too weak to cause any cha-
otic advection. However, dispersion can still be studied
by computing the stretching of a small initial deviation
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FIG. 11. The local Lyapunov exponent of surface layer trajectories due to the geostrophic circulation, the Kelvin
wave, and the Poincaré wave computed for 4.8 inertial periods and normalized by the inertial frequency f . Only
normal mode two is considered. In the upper row W 5 1 and S 5 (a) 0.1, (b) 0.3, and (c) 5. In the lower row S 5
0.66 and W 5 (d) 5, (e) 2, and (f ) 1.

j(0) from a trajectory, which to first order is described
by the variational equation

j̇ 5 A(x, t)j, (24)

where A 5 =f is the Jacobian matrix or rate of strain
tensor of the flow from Eq. (21). The local Lyapunov
exponent (Nese 1987; Eckhardt and Yao 1992),

1 \j(T )\
l 5 ln , (25)T T \j(0)\

describes the average rate of stretching experienced by
j(t) over a time T. When T → `, the standard Lyapunov
exponent l` is recovered. A positive l` is a hallmark
for chaotic advection (Binson 1997). For the chaotic
trajectories of Fig. 10, l` is indeed positive, but it is
zero everywhere in the basin for more realistic values
of W; lT, on the other hand, retains the information of
stretching rates over a finite time T, while also char-
acterizing their spatial nonuniformity (Eckhardt and Yao
1992).

Local Lyapunov exponents have been computed for
T 5 30 (øfive days at midlatitudes) for particles subject
to geostrophic component, Kelvin wave, and Poincaré
wave velocity fields contemporarily. A particle has been
released for each cell of a grid laid over the basin, its
trajectory computed for a time T, and the local Lya-
punov exponent of that trajectory attributed to the initial
cell. Then lT represents the average stretching rate en-
countered by the particle released in that cell. Eckhardt

and Yao (1992) took a different approach, progressively
assigning the local stretching rate to the cell traversed
by the trajectory and thus characterizing stretching in a
Eulerian sense. Here j(t) is computed by integrating Eq.
(24) numerically along with the trajectory Eq. (22). The
initial vector j(0) has length 1 and random orientation
since any small displacement vector rotates into the di-
rection of fastest growth (Eckhardt and Yao 1992; Del-
lago and Hoover 2000) within a relaxation time which
has been verified to be small with respect to T. In order
to avoid overflow, the length of j(t) is renormalized to
1 at regular time intervals, exploiting the linearity of
Eq. (24). Here lT can be considered a consistent measure
of spreading over timescales on the order of T 5 30
since its spatial structure and magnitude attain a nearly
constant value for times between 20 and 50.

A further qualitative description of dispersion is
adopted by tracking each particle of an initially circular
cloud. The main difference with respect to the com-
putation of lT is due to the linearity implicit in Eq. (24),
which limits lT to a measure of the stretching only for
small initial deviations j(0). How much the behavior
of a cloud changes when its size is finite depends on
the spatial nonlinearity of the flow.

Figures 11a–c and 12 show the effect on lT of dif-
ferent values of S, while Figs. 11d–f and 13 represent
the effect of W. A decrease in W or an increase in S
both intensify the asymmetry in the two gyres in much
the same way as shown by Poincaré maps (Fig. 10) and
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FIG. 12. The evolution of a cloud of particles in the surface layer (the thin circle to the left of the domain) for five
inertial periods under the effect of the geostrophic flow, the Kelvin wave, and the Poincaré wave for W 5 1 and S
5 (a) 0.1, (b) 0.25, (c) 0.66, and (d) 2. Only normal mode two is considered.

FIG. 13. The evolution of a cloud of particles in the surface layer (the thin circle to the left of the domain) for five
inertial periods under the effect of the geostrophic flow, the Kelvin wave, and the Poincaré wave for S 5 0.25 and
W 5 (a) 0.5, (b) 1, (c) 2, and (d) 10. Only normal mode two is considered.

increase the rate of stretching, mainly along the bound-
aries. This follows from the velocities in Eq. (4) being
linearly proportional to SW21. In particular, the increase
of dispersion rates with S is coherent with the increase
of kinetic energy (Fig. 3). On the other hand, when the
structure of the velocity field is examined independently
of its amplitude, keeping SW21 constant while changing
S, it is seen from Fig. 14 that dispersion increases with
rotation.

It is important to point out the effect of the waves in
these considerations. Figure 15 shows lT for the geo-
strophic component alone. From comparison with Fig.
11c, it appears that the waves affect only marginally the
magnitude of lT, implying that it is mainly the geo-
strophic component which is responsible for the stretch-
ing. However, the waves have two important effects.
First, they trigger dispersion, since without waves, par-
ticles would follow closed streamlines and there would
be no dispersion. Second, they modify the spatial dis-
tribution of lT, for example by inducing asymmetry in
the two gyres. This is shown in Fig. 16: in a simple
geostrophic flow, a cloud is not able to escape a gyre.
Addition of the waves allows a portion of it to trespass
the gyre’s boundaries and to be further dispersed.

Since no diffusion is considered, the cloud’s area re-
mains constant on average, oscillating around its initial
value due to the nonzero divergence of the waves. It is
more interesting to track the evolution of the cloud’s
perimeter, which represents the exchange area with the
surrounding fluid. The mechanism of stretching and
folding observed in Figs. 12 and 13 is typical of chaotic
advection, even though we have seen that for these val-
ues of W the perturbation induced by the waves is too
small to actually cause chaotic advection. Nevertheless,

the effect of this pseudochaotic advection is certainly a
dramatic increase in exchange area, as shown in Fig.
17. Ignoring the oscillations induced by the waves, this
growth is approximately linear.

6. Turbulent dispersion and advective spreading

It is of interest to compare pseudochaotic advection
as presented in the previous sections to turbulent dis-
persion for the particular case of the surface layer of a
stratified lake. Variables in this section will be dimen-
sional except where specified otherwise. A simple way
of comparing the two mechanisms, considered to act
separately, is by determining the growth of the size d(t)
of a cloud. Extending the validity of the local Lyapunov
exponents computed in section 5 to clouds of finite size
as a first approximation, in a region characterized by a
positive dimensionless lT a cloud of initial size d0 grows
like

l f tTd (t) 5 d e .adv 0 (26)

A horizontal turbulent dispersion coefficient for a wind-
driven surface layer can be estimated by taking the lay-
er’s depth h1 as the characteristic length scale of tur-
bulence (Csanady 1963) and the wind shear velocity u*
as the velocity scale (Monismith 1986, see appendix by
J. Imberger and S. Monismith, 432–439):

K 5 Ch u ,1 * (27)

where C is a coefficient variable between 6 and 10,
depending on the shape of the vertical velocity profile.
The dispersion coefficient is independent of time and
size of the patch since the cloud is considered to be
larger than the largest scale of turbulent motion. Csan-
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FIG. 14. The evolution of a cloud of particles in the surface layer (the thin circle to the left of the domain) for five
inertial periods under the effect of the geostrophic flow, the Kelvin wave, and the Poincaré wave for S 5 (a) 0.1, (b)
0.25, (c) 0.66, and (d) 2 and W chosen such that SW21 5 0.25 for each plot. Note that SW21 is the amplitude of the
velocity field. Only normal mode two is considered.

FIG. 15. The local Lyapunov exponent of surface layer trajectories
due to the normal mode two geostrophic component computed for
4.8 inertial periods with S 5 0.66 and W 5 1. The Lyapunov exponent
is normalized by the inertial frequency f .

FIG. 16. The evolution of a cloud of particles in the surface layer
(the thin circle to the left of the domain) for five inertial periods,
with S 5 0.66 and W 5 1, under the effect of (a) the geostrophic
flow alone and (b) with the Kelvin and Poincaré waves superimposed.

ady (1963), for example, observes the scale of turbu-
lence in Lake Huron to be consistently of the order of
10 m, which is comparable to the surface layer depth.
While for lakes with complex shorelines eddies of a
range of scales can be generated (Ivey and Maxworthy
1992), for lakes with compact shapes Csanady’s obser-
vation seems plausible since the surface layer depth is
the only important length scale. The dispersion coeffi-
cient of a cloud whose standard deviation is s is (Fischer
et al. 1979)

21 ds
K 5 . (28)

2 dt

Equating the size of the cloud dturb(t) with s, inte-
grating Eq. (28), and substituting Eq. (27) for K yields

d (t) 5 Ï2Ch u*(t 1 t ), (29)turb 1 0

where

2d 0t 5 (30)0 2Ch u*1

is a timescale related to the initial size of the cloud.
Setting dturb(ttr) 5 dadv(ttr) from Eqs. (26) and (29) and
solving for ttr allows us to compute the transition time
between small-scale turbulence dominated dispersion
and pseudochaotic advection dominated dispersion. In
terms of dimensionless time (ttr 5 ttr f and t0 5 t0 f )
this results in the implicit expression

2l tT trt 5 t (e 2 1),tr 0 (31)

and is represented in Fig. 18 as a function of t0 and lT.
Thus, for a cloud of a given initial size, lT maps the
dispersion characteristics in the lake. Where its value is
low, turbulent dispersion dominates for long times while,
where it is high, the effect of large-scale motions is felt
earlier. The latter dominates from t 5 0 if the initial rate
of growth in Eq. (26) is larger than that in Eq. (29),
which translates into the condition lT . t /2. On the21

0

other hand, turbulent dispersion dominates for t → ` if
the horizontal extent of the basin is smaller than
d0e . As an example, a typical summer situation inl tT tr

Lake Kinneret sees a wind of 10 m s21 blowing over a
surface layer of 14-m thickness and S ø 2/3. For clouds
having an initial size of 100 and 200 m, t0 5 0.4 and
11 inertial periods, respectively. From Fig. 11, there are
large enough regions in the lake where lT . 0.03, yield-
ing a transition time of ttr 5 7.8 and 2.1 inertial periods
(ø5.5 and 1.5 days at midlatitudes), respectively. The
transition time is very sensitive to the initial size of the
cloud, as expected from the exponential form of Eq. (26).
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FIG. 17. Growth of the perimeter of the clouds of particles shown
in Fig. 12. Time is normalized by the inertial period Tp and perimeters
by their initial value.

FIG. 18. Transition time ttr between turbulence dominated disper-
sion (t , ttr) and mean advection dominated dispersion (t . ttr), as
a function of t0 and lT.

Small clouds are hardly affected by pseudochaotic ad-
vection but, if they are large enough, this mechanism can
play a dominant role after a relatively small time.

7. Discussion

The structure of the motion which arises from an
initial tilt in a rotating basin is very different from the
simple seiche that develops in the nonrotational case (S
→ `). The rotation of the earth splits the initial setup
into a geostrophic component and a set of cyclonic and
anticyclonic waves. For each of the waves, the potential
to kinetic energy ratio given by Antenucci and Imberger
(2001) applies. However, the total energy in the basin
is not equal to the sum of the energy of the waves since
there is also a geostrophic component as part of the
solution, both for the IBVP and the FP. For low Burger
numbers the geostrophic component dominates, storing
most of its energy in potential form. This is ultimately
due to the difficulty in converting potential to kinetic
energy in rotating flows (Gill 1982) and causes the po-
tential to kinetic energy ratio for the basin as a whole
to increase with decreasing Burger number. The fact that
no initial potential energy is available in the FP is re-
sponsible for the difference in the geostrophic displace-
ments with respect to the IBVP.

The interpretation in terms of potential vorticity de-
veloped in section 3d sheds light on the differences in
the higher order transport properties of the two cases.
In particular, the imposition of an initial tilt in the IBVP
introduces a potential vorticity gradient. Due to con-
servation of potential vorticity, the motion of fluid col-
umns results in the generation of relative vorticity and

ultimately eddies. These eddies transport mass very ef-
fectively, leading to strong horizontal mixing. This im-
plies that for the IBVP trajectories computed in section
5 are accurate for times smaller than the time of for-
mation of the eddies. In other words, the relative vor-
ticity produced due to conservation of potential vorticity
generates velocities that can be of the same order as the
Stokes drift. For a general IBVP, there is no potential
vorticity gradient only if the initial condition is a su-
perposition of natural wavelike modes since each of
them has a zero potential vorticity gradient.

On the other hand, it is likely that the forced problems
more accurately describe the behavior of real basins. In
this case, no initial potential vorticity gradient is sup-
plied and none is introduced by the uniform forcing.
Thus, the linear velocity field exactly satisfies the non-
linear evolution equation of potential vorticity (section
3d) and therefore no eddies form as fluid columns move.
We therefore expect the dispersion properties derived
through linear theory to hold for longer times in the
forced problems than in the IBVP. In general, however,
the potential vorticity of a flow can be modified also
due to a curl in the wind forcing, whose importance for
the circulation in a closed basin was pointed out in a
numerical study of Lake Tahoe by Strub and Powell
(1986), or due to generation at the boundaries. The latter,
in particular, was observed by Ivey and Maxworthy
(1992) in their experiments on Kelvin waves dissipation.
In the absence of any background potential vorticity
gradient, they introduced relative vorticity by letting
Kelvin waves interact with a sharp edge in the shoreline
topography. The flow separating from the edge gener-
ated large scale two dimensional eddies, again respon-
sible for enhanced horizontal mixing.

The Stokes drift of all waves is cyclonic, independent
of their direction of propagation and can be of significant
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magnitude. However, advection is due predominantly to
the geostrophic component, which can exhibit chaotic
advection when perturbed by the Kelvin wave for small
Wedderburn numbers. For realistic values of W, Poin-
caré maps do not reveal any chaotic advection due to
the weakness of the perturbation induced by the Kelvin
wave. However, in a real basin other perturbation factors
(e.g., shoreline topography, secondary circulations) may
act on the geostrophic flow to generate chaotic advec-
tion.

For realistic values of W, local Lyapunov exponents
(Fig. 11) allow us to get an estimate of the dispersion
rates once the Wedderburn number and the Burger num-
ber of a basin are known. Figures 11a–c show, for in-
stance, that for lakes having the same stratification, forc-
ing, and latitude, but different horizontal dimension, the
smaller lake exhibits stronger dispersion. When the role
of stratification is studied, results have to be interpreted
with care since both W and S are dependent on strati-
fication. As an example, the seasonal evolution of a
stratified lake can be crudely simplified by assuming a
two-layer stratification with uniform constant densities
and the same forcing throughout the year. In spring the
surface layer deepens, causing both S and W to increase.
Given the proportionality of the surface layer velocities
to SW21, this causes two counteracting effects on dis-
persion, suggesting that spring dispersion rates are very
sensitive to small changes in the stratification or forcing.
In fall, the surface layer usually continues to deepen,
yielding a similar picture of dispersion, unless the sur-
face layer itself is already thicker than the lower layer.
In this case, W would keep increasing but S would de-
crease, causing dispersion rates to fade quickly.

When the waves are added to the geostrophic flow,
the boundaries of the gyres act no longer as an imper-
meable barrier to transport. This has the important effect
of stretching and folding the cloud, thereby dramatically
increasing the exchange area with the surrounding fluid.
This increase is approximately linear. It is interesting to
note that for the growth of dye filaments in a field of
homogeneous turbulence Batchelor (1952) also pre-
dicted a linear increase in time. This points to an im-
portant difference between the two mechanisms. While
turbulent dispersion increases the area of the cloud and
has an actual mixing effect, pseudochaotic advection
only increases the exchange area, thereby not directly
mixing the cloud but only enhancing the effect of small-
er-scale mixing mechanisms, such as molecular or tur-
bulent dispersion.

When the variable bathymetry of a real lake is taken
into account, its response includes an additional set of
topographic waves (e.g., Birchfield and Hickie 1977;
Huang and Saylor 1982), found by Huang and Saylor
(1982) to be significant mainly near resonance condi-
tions. Besides, both the geostrophic component and the
Kelvin and Poincaré waves are modified by the variable
depth, precluding a straightforward extension of the en-
ergetics presented above. Furthermore, the full solution

of the problem in this case is complicated by the dif-
ficulty of applying normal mode decomposition to a
stratified basin with nonuniform depth. On the other
hand, it is worth noting that our fundamental conclu-
sions on horizontal transport hold unchanged in this
case. Indeed, we showed that enhanced transport due to
chaotic advection is exhibited already by a single wave
perturbing the geostrophic motion. Addition of further
modes, be it Poincaré waves or topographic waves, will
only strengthen this dispersion mechanism.

8. Conclusions

The solution to the IBVP of a rotating, stratified basin
subject to a linear initial tilt of an interface has been
derived and compared to forced cases. The limit for
impulsive forcing has also been obtained, revealing that
shorter forcing events do not set up any geostrophic
motion and favor Poincaré waves over Kelvin waves.

The initial setup in the IBVP involves the existence
of a potential vorticity gradient that ultimately leads to
the generation of eddies. We expect the timescale for
the generation of these eddies to be of several days.
This mechanism is absent in the forced problems since
there is no initial setup and the forcing is uniform. The
difference between the two forced cases consists in the
geostrophic circulation, which is present in the FP to
balance the stress acting on the surface but is absent in
the IP. In particular, in the FP the geostrophic component
accounts for half the total energy in the response for all
Burger numbers. The difference between the geostroph-
ic circulation in the FP and in the IBVP is due to con-
servation of potential vorticity.

When the Burger number is small, Poincaré waves
are negligible in the energy balance. The geostrophic
component is dominant in the IBVP, while the response
is pushed to the boundaries in the FP. When the Burger
number is large, the geostrophic component vanishes in
the IBVP, while it reduces to a setup with no associated
circulation in the FP.

The geostrophic flow is responsible for advection in
the basin. For W . 1, the local Lyapunov exponent is
an indicator of the importance of pseudochaotic advec-
tion over turbulent dispersion in different regions of the
basin. Turbulent dispersion is dominant for short time-
scales and small clouds, while pseudochaotic advection
sets in after longer times or for larger clouds, provided
the cloud is in a region characterized by large stretching
rates. In a lake, the transition time between the two
mechanisms can be as low as one day. The important
conclusion is that in field experiments the dispersion of
a cloud is linked not only to the strength of the turbulent
eddy field, but can partly be explained in an entirely
deterministic manner by considering the topology of the
large-scale flow field.
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APPENDIX

Solution of the Fundamental Problem

In order to decouple the solution procedure in space
and time, the Laplace transform of Eq. (1) is taken.
Transformed displacements are defined as

`

2stP 5 L(h) 5 h(t)e dt , (A1)E
0

where s is the parameter of the transformation. Simi-
larly, U and V are the Laplace transforms of u and y,
respectively. When time derivatives are transformed, the
initial conditions come into play:

`]h ]h
2stL 5 e dtE1 2]t ]t0

`

2st ` 2st5 h(t)e | 1 s h(t)e dt0 E
0

5 2h(t 5 0) 1 sP. (A2)

In transforming the forcing term, the Laplace transform
s21 of the Heaviside function H(t) is used. The equa-
tions of motion and conservation of mass Eq. (1) are
transformed as

]P 1
21sU 2 V 5 2 1 SW cosq (A3a)F]r s

]P 1
21sV 1 U 5 2 2 SW sinq (A3b)Fr]q s

U ]U ]V
1 1 5 2sP 1 h . (A3c)0r ]r r]q

These can be combined to derive a wave equation in
terms of transformed displacements only. Multiplying
the divergence of Eqs. (A3a) and (A3b) by s, adding
the curl of the same two equations, and making use of
Eq. (A3c) yields

h02 2¹ P 5 (1 1 s ) P 2 , (A4)1 2s

where the Laplacian in polar coordinates is
2 2] ] ]

2¹ [ 1 1 . (A5)
2 2 2]r r]r r ]q

The next task is to express the boundary condition of
zero radial velocity at r 5 S21 in terms of the displace-
ment. Multiplying Eq. (A3a) by s, adding Eq. (A3b),
and setting U 5 0 at r 5 S21 yields

]P ]P
s 1

]r r]q

sinq
21 215 SW cosq 2 0 : r 5 S . (A6)F 1 2s

Note how the initial condition enters the wave equation
(A4), while the forcing enters the boundary condition
(A6). A solution to Eq. (A4) is now sought in the form
of the sum of all azimuthal modes, each one having its
own radial structure:

` `

c sP 5 G (r) cosnq 1 G (r) sinnq. (A7)O On n
n50 n51

Substituting this expression into the transformed wave
equation (A4), one finds that the radial structure of each
azimuthal mode must obey a Bessel equation:

2 2] G ]G n
21 2 z 1 G 5 0, (A8)

2 21 2]r r]r r

which has the solution (Abramowitz and Stegun 1965)

G(r) 5 KI (zr),n (A9)

where K is a constant, z 5 (1 1 s2)1/2, and In represents
the modified Bessel function of order n; G represents
all and , except , which instead, due to the initialc s cG G Gn n 1

condition Eq. (3), satisfies the nonhomogeneous Bessel
equation

2 c c] G ]G 11 1 2 c1 2 1 1 s 1 G1 12 22]r r]r r
21 1 s

215 2 SW r. (A10)Cs

The particular solution to Eq. (A10) is readily found,
and the general solution for is thereforecG1

21SW rCc cG (r) 5 K I (zr) 1 . (A11)1 1 1 s

In general, Eq. (A7) is substituted into the boundary
condition Eq. (A6) and one equation for each harmonic
in q is found, allowing the coefficients in Eq. (A7) to
be determined. However, due to the azimuthal mode one
initial condition, Eq. (A7) will contain only terms in
cosq and sinq. Substituting this reduced expression for
Eq. (A7) into Eq. (A6) and solving separately for the
coefficients of cosq and sinq yields two equations for
the coefficients and . These are then substitutedc sK K1 1

back into Eq. (A7) to yield

F(s)
P 5 , (A12)

C(s)

where
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I (zr)121 2 2 21 21F(s) 5 SW r(1 1 M s ) cosq 2 (W 2 W )c C F I (z)1

23 [(1 1 Ms ) cosq 1 s(1 2 M ) sinq] (A13)
2 2C(s) 5 s(1 1 M s ) (A14)

zI (z)0M 5 2 1, (A15)
I (z)1

and z(s) is complex in general so as to avoid the use of
both Bessel and modified Bessel functions. The inverse
Laplace transform, defined as

1i`1
21 sth(t) 5 L (P) 5 P(s)e ds, (A16)E2pi

2i`

is then applied to Eq. (A12) to find the solution in terms
of the actual displacements. Using Heaviside’s formula
(Csanady 1968), which applies to functions that can be
written as a quotient of two polynomials, the inverse
Laplace transform can be computed as

F(s )i s tih(t) 5 e , (A17)O
C9(s )i i

where the prime denotes differentiation with respect to
s and the poles si are the zeros of C in Eq. (A14). The
poles are of two kinds:

s 5 0 (A18)

s 5 6is , (A19)k

where the indices have been dropped. The first pole
generates a steady geostrophic component, while the
poles associated with the natural frequencies of the basin
sk give rise to progressive waves. The frequencies sk

satisfy the dispersion relationship (Csanady 1967)
2 21 2 s M 5 0,k (A20)

where

z I (z )k 0 kM 5 2 1 (A21)
I (z )1 k

21 2z 5 S Ï1 2 s . (A22)k k

The solution for displacements follows after some
algebra and is given in Eq. (4a), where

s 2 1ka 5 (A23)k 22 31 1 s 2 S sk k

I (rz S)1 kA 5 (A24)k I (z )1 k

dA rz SI (rz S)k k 0 kD 5 r 5 2 A (A25)k kdr I (z )1 k

s 5 0. (A26)0

Velocities [Eqs. (4b,c)] can then be found by deriving an
expression for transformed velocities from Eq. (A3a,b)

in terms of transformed displacements and by inverting
them again through Heaviside’s formula Eq. (A17).
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