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We present a combined experimental and numerical investigation of a sphere settling
in a linearly stratified fluid at small Reynolds numbers. Using time-lapse photography
and numerical modelling, we observed and quantified an increase in drag due to
stratification. For a salt stratification, the normalized added drag coefficient scales as
Ri0.51, where Ri = a3N2/(νU ) is the viscous Richardson number, a the particle radius,
U its speed, ν the kinematic fluid viscosity and N the buoyancy frequency. Microscale
synthetic schlieren revealed that a settling sphere draws lighter fluid downwards,
resulting in a density wake extending tens of particle radii. Analysis of the flow and
density fields shows that the added drag results from the buoyancy of the fluid in a
region of size (ν/N)1/2 surrounding the sphere, while the bulk of the wake does not
influence drag. A scaling argument is provided to rationalize the observations. The
enhanced drag can increase settling times in natural aquatic environments, affecting
retention of particles at density interfaces and vertical fluxes of organic matter.

1. Introduction
The process of an object settling in a stratified fluid occurs ubiquitously in nature,

with examples being the settling of marine snow aggregates through thermoclines
and haloclines in oceans and lakes (MacIntyre, Alldredge & Gotschalk 1995), and
dust in the atmosphere (Kellog 1990; Turco et al. 1990). Despite this ubiquity, the
influence of stratification on settling has received little attention and remains poorly
understood. Although conceptually simple, the problem is somewhat paradoxical:
while stratification tends to suppress vertical fluid motion (Koh 1966; Turner 1973),
the latter is demanded by the settling process.

The problem of particle motion in a homogeneous fluid is one of the oldest in
fluid mechanics. The resistance to motion is described by a drag law, via a drag
coefficient CD that depends only on the particle’s Reynolds number. For a sphere of
radius a moving at speed U in a fluid of kinematic viscosity ν, the Reynolds number
is Re = Ua/ν and a large body of experimental, theoretical and numerical work has
established the dependence of CD on Re (White 2005). The small-Reynolds-number
regime, which is relevant to this paper, is reviewed by Leal (1980).

The presence of stratification significantly alters the problem of particle motion
in a fluid. For a given stratification agent (e.g. salt or temperature) the dynamics
depend on both Re and Fr = U/(Na), where N = [−(g/ρ0) dρ/dz]1/2 is the buoyancy
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frequency, ρ0 a reference fluid density, g the acceleration of gravity and dρ/dz the
background density gradient. Furthermore, there is a distinct asymmetry between
motion parallel and perpendicular to isopycnals (i.e. surfaces of constant density);
since fluids are often vertically stratified, this corresponds to horizontal and vertical
motion, respectively. Considerable attention has been devoted to horizontal motion,
motivated by the design and operation of underwater vehicles and atmospheric
flow past topography (Smith 1979, 1980; Greenslade 1994; Vosper et al. 1999). The
tendency of stratification to suppress vertical motion (Koh 1966; Turner 1973) drives
flow primarily around, rather than over, a horizontally moving three-dimensional
body, while a two-dimensional body blocks a horizontal layer of fluid, the length
of which is determined by viscous forces and scales linearly with Re/Fr2 (Tritton
1988). This dimensionless group describes the relative importance of buoyancy forces
(g �ρ a3 ∼ ρN2 a4) and viscous shear forces (ρνUa): we will show it plays an important
role in the problem at hand and we will call it the viscous Richardson number
Ri= Re/Fr2 = a3 N2/(ν U ) by analogy with the high-Reynolds-number case where the
Richardson number expresses a balance between buoyancy and inertial forces (Tritton
1988). For moderate-to-high Re (� O(103)), horizontal motion can generate internal
waves, resulting in enhanced drag (Lofquist & Purtell 1984; Greenslade 2000; Scase
& Dalziel 2004).

Considerably less work exists on vertically moving bodies in stratified fluids. The
simplest configuration, a two-layer fluid, was first investigated by Srdić-Mitrović,
Mohamed & Fernando (1999), who measured the drag on a sphere settling through
a thin density interface for 1.5 <Re < 15. Their study revealed up to an order of
magnitude increase in drag over the homogeneous case for 3<Fr < 10. The added
drag resulted from the buoyancy of a tail of light fluid dragged down by the sphere.
For the same configuration, Abaid et al. (2004) found a regime in which the sphere
‘levitates’, briefly reversing direction after crossing the interface.

For a body smaller than the vertical extent of the stratification, consideration of
a continuous stratification is more appropriate than a sharp interface; the simplest
case being a linear stratification. Torres et al. (2000) numerically investigated the case
of a sphere in the parameter regime 25 � Re � 100 and 0.2 � Fr � 200, finding CD to
strongly increase with Fr−1 for Fr< 20. The added drag was due to a rear buoyant
jet, predicted by Eames, Gobby & Dalziel (2003) for an inviscid and non-diffusive
fluid, associated with the return of isopycnals to their neutral density position. The
existence of this jet, and the associated suppression of rear vortices, was supported
by shadowgraph experiments at Re ∼ 800 (Ochoa & Van Woert 1977). An increase
of CD with Fr−1 was also observed by Higginson, Dalziel & Linden (2003) for the
related problem of a freely rising horizontal grid of bars at 1000 � Re � 3000 and
0.03 � Fr � 0.22, and rationalized in terms of the buoyancy of displaced fluid in the
wake of the grid. Although internal waves can exist for moderate-to-high Re (Warren
1960; Scase & Dalziel 2004), in the aforementioned studies they were found not to
contribute to drag. While a theoretical analysis (Zvirin & Chadwick 1974) suggests
that stratification enhances drag even at Re � 1, predicting a dependence of CD on
Ri1/3, there is a dearth of quantitative experimental data at small Reynolds numbers.
Thus it still remains unclear whether settling particles experience added drag at
Re= O(1) and, if so, how this drag scales with stratification.

Here we present time-lapse photography, microscale synthetic schlieren experiments
and numerical simulations to quantify and rationalize the drag of small spheres
settling in a salt-water stratification, and propose an empirical drag law for a linearly
stratified fluid. The paper is structured as follows. In § 2 we provide a formulation for
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Figure 1. (a) Schematic of a sphere settling in a linearly stratified fluid. (b) The numerical
grid in the region close to the sphere.

the stratified drag coefficient and in § 3 we describe the experimental and numerical
methods to measure it. Results are presented in § 4 and discussed in § 5, along with a
scaling argument to support our findings.

2. Formulation of stratified drag coefficient
The drag force FD on a sphere in a homogeneous fluid can be written as

FD = −6πμaU − 4

3
πa3 ρ

2

dU

dt
− 6a2ρ

√
πν

∫ t

−∞

(
dU

dt

)
t=s

ds√
t − s

, (2.1)

where ρ is the density of the fluid and μ its dynamic viscosity. The first term on
the right is the Stokes drag for steady settling at speed U , the second is the added
mass drag, arising because an accelerating sphere spends energy in accelerating the
surrounding fluid, and the third is the Basset history drag, due to diffusion of vorticity
from an accelerating sphere as the boundary layer forms. The latter two terms are
negligible under steady conditions. To adopt a consistent formulation of FD across all
Re, it is customary to write FD = CH

D
1
2
ρU 2πa2, where the homogeneous drag coefficient

CH
D is a function of Re; for Re � 1, CH

D = 12/Re. While this formulation is somewhat
misleading, since FD is independent of Re in this regime, empirical extensions of this
formulation prove useful to bridge the small and moderate Re regimes. A widely used
empirical relation is

CH
D =

12

Re
+

6

1 +
√

2Re
+ 0.4, (2.2)

which holds for 0 <Re < 2 × 105 with less than 10 % error (White 2005).
A schematic of the problem under investigation is shown in figure 1(a). Adopting

the formalism for a homogeneous fluid, under quasi-steady conditions (defined below)
we write the drag force in a stratified fluid as FD =CS

D
1
2
ρU 2πa2, where the unknown

stratified drag coefficient CS
D captures the influence of stratification. For a given

stratifying agent, we expect CS
D to depend on Re and Fr. In general, CS

D will also
depend on the Prandtl number Pr= ν/D, where D is the diffusivity of the stratifying
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agent. Here we focus on salt stratifications (Pr =700) and briefly address temperature
stratifications (Pr =7).

Settling in a stratified fluid is an inherently unsteady process, because the density
contrast between particle and surrounding fluid, and hence the particle speed,
decreases during settling: eventually the particle comes to rest at its depth of neutral
buoyancy. We will see, however, that settling is quasi-steady for the parameter regime
explored here, as added mass and Basset terms are negligible. Then, U is set by the
balance of drag and buoyancy forces:

CS
D

1

2
ρU 2πa2 =

4

3
πa3�ρ g, (2.3)

where �ρ = ρP − ρ is the density contrast and ρP the particle density. This yields

CS
D =

8ga

3U 2

�ρ

ρ
, (2.4)

which enables CS
D to be determined from measurements of ρ(z) and U (z). To highlight

the effect of stratification, one can normalize CS
D by the locally homogeneous drag

coefficient CH
D from (2.2) that the sphere would have if the entire water column had

the density and viscosity of the fluid at that depth. The normalized drag coefficient

CN
D =

CS
D

CH
D

(2.5)

reveals whether stratification does (CN
D �= 1) or does not (CN

D = 1) affect drag.

3. Methods
3.1. Drag measurement by time-lapse photography

Experiments were performed in a 30 cm high, 51 cm long and 26 cm wide acrylic tank,
with 0.54 cm thick walls. The tank was covered with a lid to eliminate convection
in the fluid due to evaporation. An initial set of experiments was performed in
homogeneous salt-water solutions of densities 1000, 1019 and 1035 kg m−3, measured
with an Anton-Parr DMA38 densitometer. For all other experiments, the tank was
filled from below with linearly stratified salt water using a double-bucket system
(Oster 1965), and left to stand for at least 5 h to dissipate any residual flows. To
achieve larger density gradients, in some experiments the tank was first partially filled
with fresh water, followed by linearly stratified salt water up to a density ρS , and
finally with homogeneous salt water of density ρS .

Spherical density floats (American Density Floats) with densities ranging from
1010.0 to 1130.0 kgm−3 in intervals of 10.0 kg m−3 were released into the tank to
measure dρ/dz. Regular vertical spacing of the floats confirmed the linearity of
the density profile ρ(z). The density gradient was determined from a linear fit to
ρ(z) and used to compute N , taking ρ0 = 1000 kg m−3. The small size of the floats
(diameter = 7 mm) and their location far from the settling path (>20 cm) ensured that
they did not affect the density field. There was no discernible motion of the floats,
demonstrating the absence of any convection in the tank.

Polystyrene spheres of radius a = 196 and 390 μm (Duke Scientific; coefficient of
variation for a: 3 %) and density ρP = 1050 kgm−3 were used in the experiments.
To ensure the accuracy of ρP , we confirmed that the polystyrene spheres and the
1050 kg m−3 density float came to rest at the same depth. We measured the temperature
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Figure 2. (a) The settling velocity U versus depth z for ten replicate experiments (feint lines),
along with the mean (bold line), for a =390 μm and N =2.92 s−1. (b) The parameter regime
explored experimentally, shown in terms of Re and Fr−1. Each experiment is represented
by a continuous curve, because a particle samples decreasing Re and Fr as it settles into
progressively denser fluid. Curves at larger Fr are shorter because in a weaker stratification U
(and thus Re and Fr) varies less over a given vertical window. All experiments were conducted
at Pr = 700 (salt stratification). Two sphere sizes were used: a = 196 μm (experiments 1, 2, 3, 5,
6, 9 and 10) and a = 390 μm (experiments 4, 7, 8 and 11).

of the fluid at the depth of each observation by a needle thermometer located far
from the settling path. The temperature and the corresponding density were used to
calculate the local dynamic viscosity μ (Fofonoff & Millard 1983), including the effect
of salinity on viscosity. Before release, particles were mixed with a small amount of
fluid from the surface of the tank and a minimal amount of soap as a wetting agent to
prevent sticking. To ensure settling through the observation window, a single particle
was released using a 1 ml pipettor through a partially submerged conical injector (a
1 ml pipette with its tip cut off) inserted in a 7 mm diameter hole in the lid.

To avoid wall effects, the settling path was more than 5 cm (>125a) from the nearest
wall of the tank, which corresponds to a less than 1 % change in drag coefficient
for a homogeneous fluid (Clift, Grace & Weber 1978). The spheres settled in front
of a black background and were illuminated by a fibre optic light source. A ruler
placed to the side of the settling path, and at the same distance from the camera,
was used to calibrate vertical distances, and set vertical by use of a plumb line.
Images were captured over a 3 cm tall observation window at 3–12 frames s−1 using
a JAI CV-M4 + CL CCD camera controlled by Digiflow (Dalziel 2006) and spheres
were subsequently tracked with Matlab (The Mathworks, Natick, MA). A particle
appeared as a light spot on a dark background, and the centre of the spot was taken
as the position of the particle. The time series of vertical position was smoothed by
a three-point moving average, before computing the particle velocity U (z) using a
four-point centre-difference approach (Dalziel 1992).

For each experiment, characterized by a given combination of N , a and �ρ,
10 replicate runs were performed to reduce errors associated with such factors as
variability in particle size and injection conditions. At each vertical location, the mean
velocity was computed as the average over these 10 runs, as shown in figure 2(a).
The mean velocity profile, in combination with ρ(z), determined Re, Fr, Ri = Re/Fr2,
and CN

D , which all varied over the vertical length of the observation window since
ρ(z) increased with depth. Experiments were repeated for 0.01 � Re � 1.57 and
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0.09 � Fr � 6.75 (figure 2b) by varying N and a. As a validation of our averaging
procedure, two sets of 10 runs were performed in two adjacent observation windows
along the settling path, for a = 196 μm and N =1.69 s−1. The two resulting curves in
(Re, Fr−1) space (curves 1 and 2 in figure 2b) are a smooth continuation of each
other. For all the settling experiments performed, calculation of dU/dt showed that
the added mass and Basset force terms (see (2.1)) contributed less than 1 % of the total
drag force, justifying our earlier assumption of quasi-steady settling. While the added
mass and Basset forces will in general be different in stratified and homogeneous
fluids, we do not expect the difference to be large enough to make these forces
important in the settling process studied here.

3.2. Wake visualization by microscale synthetic schlieren

To visualize the effect of the settling sphere on the fluid density field, we performed
experiments using microscale synthetic schlieren (Yick, Stocker & Peacock 2006).
Synthetic schlieren (Sutherland et al. 1999) is the digital implementation of an optical
technique to measure density perturbations using the relation between the density and
refractive index of salt-stratified fluid. A detailed description of microscale synthetic
schlieren, along with its application to spheres as small as a = 78 μm, is presented in
Yick et al. (2006). Our experiments were performed in a 48 cm high, 6.3 cm long and
2.5 cm wide acrylic tank, with 0.54 cm thick walls. A stratification was established and
measured as described in § 3.1. A three-stage micromanipulator mounted on top of the
tank facilitated the accurate deposition of the sphere at the centre of the tank through
a conical injector (as above) and subsequent passing through the observation window.
The distance between the settling path and the closest wall (>32a) corresponded to a
less than 5 % change in drag coefficient for a homogeneous fluid (Clift et al. 1978):
as will be seen below, this is negligible compared to the effect of stratification.

A 2 × 2 cm mask consisting of a random pattern of 35 μm dots was printed on
transparency film using a high-resolution image setter (Fineline Imaging, Colorado
Springs, CO). The pattern was mounted 8.3 cm behind the back wall of the tank, and
imaged at 20 frames s−1 using a PCO 1600 CCD camera, operating at a resolution of
800 × 600 pixels. The camera was mounted on a Nikon SMZ 1000 stereomicroscope
fitted with a P-Achro 0.5 × objective, positioned 18.9 cm in front of the mask (the
maximum working distance). The apparent displacements of the mask caused by
density perturbations due to the settling sphere were determined by image analysis
using Digiflow (Dalziel 2006). As described by Yick et al. (2006), due to the limited
depth of focus of the microscope, the position of the sphere is known only to within
one sphere radius.

Two forms of processing were used. The first, known as qualitative synthetic
schlieren (Dalziel, Hughes & Sutherland 2000), consists simply of subtracting the
reference image from each subsequent image and provides a proxy for the relative
magnitude of density perturbation gradients. The second, quantitative synthetic
schlieren (Sutherland et al. 1999; Dalziel et al. 2000), uses cross-correlation algorithms
to compute the apparent displacements of the mask and inverts them to obtain the
associated gradients in density perturbation. Details of the processing are given in
Yick et al. (2006). Radial density perturbation gradients ∂ρ ′/∂r were then integrated
along r at a given vertical position z, and this was repeated for every vertical
location in an image, yielding the density perturbation field ρ ′. This was added to the
background density field, enabling calculation of isopycnals by contouring the total
density field in Matlab.
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3.3. Numerical model

Numerical simulations were performed for comparison of the drag coefficient with
experimental data and to obtain high-resolution information on the density and flow
fields over a wide range of parameters. Simulations were carried out in the parameter
regime 0.05 � Re � 2.1, 0.02 � Fr � 200, and 7 � Pr � 700. The model was adapted
from an earlier one (Torres et al. 2000; Larrazábal, Torres & Castillo 2003) and is
described here only briefly. It considers flow of a linearly stratified fluid at constant
velocity U past a stationary sphere (figure 1a), and uses finite-differences to solve the
non-dimensional equations

∂u
∂t

+ u · ∇u = −∇p − ρ ′

Fr2
j +

1

Re
∇2u, (3.1)

∂ρ ′

∂t
+ u · ∇ρ ′ = w − 1 +

1

ReP r
∇2ρ ′, (3.2)

∇2p = − 1

Fr2
∇ · (ρ ′ j ) − ∇ · [(u · ∇)u] +

1

Re
∇2P − ∂P

∂t
, (3.3)

obtained by rescaling lengths by a, velocities by U , pressure perturbations by ρ0U
2 and

density perturbations by −a (dρ/dz). Here u = (u, w) is the fluid velocity in the radial
and vertical direction, respectively, p the pressure, j the vertical unit vector, positive
upwards, and P = ∇ · u. Equation (3.3) replaces the incompressibility condition: when
discretizing ∂P/∂t as (P n+1 − P n)/�t (n refers to the integration time t = n�t and
�t is the integration step), incompressibility was enforced by setting P n+1 = 0. The
boundary conditions on the surface of the sphere were u =0 and zero density flux,
enforced by requiring (∂ρ ′/∂z) z + (∂ρ ′/∂r) r = z. The surface boundary condition for
pressure was obtained from (3.1) by setting u = 0. Far from the sphere, all physical
quantities tended to their unperturbed values: u = (0, 1) at the upstream (lower)
boundary, ∂u/∂z = 0 at the downstream (upper) boundary and ρ ′ =0, ∂p/∂n= 0 at
both.

To improve accuracy near the sphere surface while simplifying the implementation
of boundary conditions, (3.1)–(3.3) were written in curvilinear coordinates (ξ, η) and
solved on a curvilinear grid (figure 1b), as described in Torres et al. (2000). The
external boundary of the grid was elliptic, with axes lengths of 80 (vertical) and
40 (horizontal). The grid consisted of 65 × 91 or 195 × 91 (ξ × η) mesh points, non-
uniformly distributed with a higher mesh density near the sphere and a smallest grid
size of 8.2 × 10−4. The grid ensured that the density boundary layer δρ = O((Re Pr)−1/2)
was accurately resolved: for Pr= 700 and Re = 1, δρ =0.038 was covered by 16 grid
points. This also ensured resolution of the momentum boundary layer, which was
always thicker than the density boundary layer since Pr> 1.

For the small Reynolds number stratified regime investigated here, the generalized
minimal residual (GMRES) method (Saad 2003) was found to be superior in solving
the Poisson equation for pressure (3.3) compared to the successive over-relaxation
method (Larrazábal et al. 2003) used in a previous version of the code (Torres et al.
2000). The solution procedure was then as follows: given u and ρ at time t = n�t , p

was obtained from (3.3) using GMRES and substituted into (3.1) and (3.2). Solution of
the latter two equations yielded updated values of u and ρ at t = (n+1) �t . Equations
(3.1)–(3.3) constitute a time-dependent problem, but here we were interested in steady
solutions. Therefore, the cycle was repeated starting from u = (0, 1) and ρ ′ =0 until
the convergence criterion |f n+1 − f n|max < 10−4 was satisfied, where f represents each
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Figure 3. The homogeneous drag coefficient CH
D measured experimentally (circles) and

computed numerically (triangles), compared with the prediction from (2.2) (continuous line),
as a function of Re.

and every one of u, w, p or ρ. The time step was �t = 0.0025 or 0.0001 and steady
state was typically reached within t =30. Extensive convergence tests on time step
and mesh size were carried out by Larrazábal et al. (2003).

The drag coefficient CS
D was computed as the sum of the pressure (CS

P ) and viscous
(CS

V ) drag coefficients:

CS
P = − 1

1
2
ρU 2πa2

∫
S

p n · j dS, (3.4)

CS
V =

1
1
2
ρU 2πa2

∫
S

μ n · ((∇u) + (∇u)T ) · j dS, (3.5)

where n is the unit vector normal to the sphere surface S, positive outwards.
Drag coefficients were normalized by their homogeneous counterparts to obtain
the normalized drag coefficients CN

D , CN
P and CN

V .

4. Results
We begin by reporting experimental results for particles released in homogeneous

salt-water solutions. Unless otherwise noted, all results are expressed in dimensionless
form as described in § 3.3. Using the measured terminal settling velocity U , CH

D was
computed from a balance of buoyancy and drag ((2.4), for CH

D instead of CS
D). This

was repeated for four fluid densities. Results are reported as a function of Re in
figure 3 and compared to the prediction from (2.2). The good agreement validates
our procedure for measuring settling velocity, ensuring that drag coefficients can
be reliably determined. A validation of the numerical model was performed by
computing CS

D for various Re and Fr= 200. At this high value of Fr, stratification
is unimportant and as one would expect the calculated values of CS

D tend to CH
D

(figure 3).
We proceeded to measure drag in a linearly stratified fluid and present results in

terms of the normalized drag coefficient CN
D . This is shown as a function of Fr−1 and

Ri in figure 4(a, b), respectively (solid lines). The choice of Fr−1 as the independent
parameter is appropriate at moderate Re (Torres et al. 2000; Higginson et al. 2003),
while Ri is suggested by the theoretical analysis of Zvirin & Chadwick (1974).
Three important conclusions emerge. The first is that CN

D > 1, demonstrating that a
linear stratification does increase drag at small Re; indeed, our experiments reveal that
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Figure 4. The normalized drag coefficient CN
D as a function of Fr−1 for experiments (solid

blue lines) and numerical simulations (symbols). The bars represent upper and lower bounds
of experimental values. (b) CN

D as a function of Ri for experiments (solid blue lines) and
simulations (symbols). Dashed lines represent power law fits, performed separately for the
experiments and each set of simulations, and colour-coded accordingly. Inset: detail of CN

D − 1
versus Ri in log–log scale. (c, d ) The numerical pressure drag coefficient CN

P and viscous drag
coefficient CN

V versus Ri, along with best fit power laws (dashed lines). In all panels, dotted lines

represent the theoretical prediction for homogeneous Stokes flow (Ri= 0): CN
D = 1, CN

P = 1/3
and CN

V =2/3.
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axes of (a) and (b) are the integrands in the definition of the pressure and viscous drag
coefficients, (3.4) and (3.5) respectively, and θ = −π/2 is the front of the sphere (figure 1).

stratified drag can be more than three times its homogeneous counterpart. Second, CN
D

increases monotonically with both Fr−1 and Ri, showing that stronger stratifications
result in larger drag. Third, the data collapses considerably better when plotted
against Ri than against Fr−1, implying that Re and Fr affect CN

D only through the
combination Ri =Re/Fr2 at small Re. We found a fit of the form 1 + α Riq appropriate
to describe the dependence of CN

D on Ri, with the best fit for the experiments given
by CN

D = 1 + 1.95 Ri0.62.
Drag coefficients were also computed numerically. We performed two sets of

simulations (Re = 0.05 and 0.5) at Pr= 700 to model a salt stratification (the
data set for Pr = 7 represents a temperature stratification and will be discussed
later). Numerical results (figure 4, symbols) confirm that CN

D > 1 and there is good
quantitative agreement with the experiments. Furthermore, numerical results likewise
reveal the clear dependence of CN

D on Ri by successfully collapsing data for two
different Re. A best fit to the combined numerical data for Re= 0.05 and 0.5 yields
CN

D = 1 + 1.91 Ri0.41 (CN
D − 1 ∼ Ri0.39 for Re = 0.05; CN

D − 1 ∼ Ri0.43 for Re= 0.5). This
is a slightly weaker dependence compared to the experiments, but the difference
in CN

D predicted from the two fits is <15 % over the experimental parameter
range.

Numerical results further reveal that both the pressure and viscous components of
drag increase with Ri (figure 4c, d ). For Ri = 0, CN

P = 1/3 and CN
V = 2/3, as expected

for Stokes flow. The scaling of CN
P − 1/3 and CN

V − 2/3 with Ri is similar to CN
D −

1, with a slightly larger exponent for CN
P . To understand the origin of pressure

and viscous drag increase, in figure 5(a, b) we plot the pressure and the vertical
component of the tangential shear stress along the surface of the sphere, respectively,
corresponding to the integrands in (3.4)–(3.5). An increase in Ri induces a larger front-
aft pressure difference (figure 5a), resulting in increased pressure drag, and enhances
shear stresses, particularly at the equator (figure 5b), accounting for the larger viscous
drag.

Further detail on the nature of the wake behind a settling sphere was obtained using
microscale synthetic schlieren. Figure 6 shows a qualitative synthetic schlieren image
for an a =390 μm sphere settling in a stratification with N =1.31 s−1 (corresponding to
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3 mm

Figure 6. Qualitative synthetic schlieren visualization of the wake of an a = 390 μm sphere
for N = 1.31 s−1. The intensity is correlated with the magnitude of the density perturbation
gradient. The figure is a composite of two frames (top and bottom) and the position of the
sphere, added in postprocessing, is accurate to within one sphere radius. Adapted from Yick
et al. (2006).

Re = 2.1, Fr = 10.2, Ri= 0.02). Several features of the wake are immediately apparent.
It is symmetric about the central axis, as one would expect from radial symmetry, and
is of considerable length (>22 mm), revealing that the stratification remains perturbed
far downstream of the sphere. The wake structure becomes more complex near its
end, in the form of a pair of faint white lobes.

Quantitative processing of this data yields the density field in the wake of the
sphere (figure 7a). Isopycnals are dragged down by as much as five sphere radii.
Vertical isopycnal displacement diminishes with distance z downstream of the sphere,
as isopycnals return to their neutral buoyancy position. As the viscous force resisting
this retreat decreases with both z and r , retreating isopycnals overshoot on the rim
of the wake at z ∼ 20, creating a toroidal structure akin to that of a laminar buoyant
jet (Tenner & Gebhart 1971). This mild overshoot, which is responsible for the white
lobes in figure 6, is locally damped by viscosity and does not trigger internal waves.

Several key features of the wake are confirmed by the numerical density field,
shown in figure 7(b). The wake length is similar for experiments and numerics, and in
both cases isopycnals overshoot without radiating internal waves. The deformation of
numerical isopycnals is somewhat sharper compared to experiments, for reasons that
we could not determine. Several possibilities were tested and discounted, including
the resolution of the camera, random dot pattern, schlieren processing and numerical
grid. It is interesting, however, that drag coefficients are in good agreement (figure 4).
Added drag will later be rationalized in terms of the buoyancy of fluid in the
immediate vicinity of the sphere. In this region, isopycnal distortion in experiments
and numerics is comparable.
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Taking a closer look at the numerical results in the vicinity of the sphere, we see
that isopycnals are strongly compressed in front of the sphere (figure 8a), resulting in
an increased pressure gradient (figure 5a) and hence pressure drag (figure 4c). As the
sphere descends, isopycnals part and tilt (figure 8b), causing baroclinic generation of
vorticity, which enhances shear stresses (figure 5b) and thus viscous drag (figure 4d ).
At the rear, isopycnals detach from the sphere, without generating the buoyant jet
(figure 8c) characteristic of higher Re (Torres et al. 2000). On the larger scale,
simulations predict that wake length and isopycnal deflection decrease with increasing
Ri (figure 9), since enhanced buoyancy more effectively opposes vertical motion
and more rapidly restores isopycnals. These features of the numerical solution
are supported by further experimental observations. As shown in figure 10(a),
the only region where synthetic schlieren detected vertical pattern displacements
(corresponding to vertical density gradients) was ahead of the sphere, in contrast to
the strong horizontal pattern displacements that were detected in the wake (figure 10b).
Furthermore, the length of the wake and the magnitude of isopycnal distortion both
clearly diminished as Ri increased (figure 10b, c).
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Figure 10. (a) Horizontal and (b, c) vertical pattern displacements generated by an a = 390 μm
settling sphere, detected using microscale synthetic schlieren. Colourbar units are in pixels.
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sphere radius. Note the different colourbar scale in (b) and (c).

5. Discussion
The primary result of this study is that stratification increases hydrodynamic

drag on a sphere settling at small Re: both experiments and numerical simulations
revealed that CN

D > 1. For a given Prandtl number Pr (e.g. a given stratifying agent),
the drag increase is best characterized by Ri =Re/Fr2. The latter arises naturally
when considering the relative importance of buoyancy and viscous forces, which can
be expressed as

∫
VF

g �ρ dV/
∫

SF
μ(∂w/∂r) dS, where VF and SF are the volume and

surface area of a fluid element; assuming that lengths scale with a, speeds with U
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Figure 11. Numerical density field ρ − ρ(0) in the wake of a settling sphere for Ri= 0.43
obtained from (a) Re =0.05,Fr = 0.34 and (b) Re= 0.5,Fr =1.08. Note the strong difference
in the wake structure, except in the region closest to the sphere.

and density contrast with a (dρ/dz), this ratio scales like Ri. The experimentally
and numerically determined drag coefficients are in good quantitative agreement
(figure 4b), reaching up to 3.4 times the homogeneous value for 0<Ri < 2. To further
increase Ri while maintaining Re small, N would have to be increased beyond our
maximum value of 2.92 s−1; such large values are rare in nature. Considering both
experimental and numerical results, our study suggests that the normalized drag
coefficient scales as CN

D − 1 ∼ Riq , where q = 0.51 ± 0.11, in contrast to the theoretical
prediction q = 1/3 for Ri � 1 (Zvirin & Chadwick 1974).

The observed added drag due to stratification at small Re complements earlier
studies at higher Re (Srdić-Mitrović et al. 1999; Torres et al. 2000; Higginson et al.
2003) and it is worthwhile to assess whether previously proposed mechanisms can
account for our findings. For a linear stratification at 25 � Re � 100, Torres et al.
(2000) found that the increase in drag of a settling sphere was related to a rear
buoyant jet; the current numerical studies, however, reveal no sign of such a jet
(figure 8c), consistent with the increased importance of viscous forces, which prevent
a rapid retreat of isopycnals. For a step-wise stratification at 1.5 <Re < 15, Srdić-
Mitrović et al. (1999) found that the increased drag on a sphere was accounted for
by the buoyancy in the entire wake of dragged-down fluid. In our case, integration of
the buoyancy over the entire wake in figure 7(a) results in a force (13.0 × 10−8 N) far
larger than the measured increase in drag (1.5 × 10−8 N). That drag does not depend
on the entire wake is further supported by the numerical results in two manners.
First, two wakes can have significantly different size (figure 11), hence buoyancy, and
yet the same drag coefficient (figure 4). Second, a force balance on the wake that
ignores the contribution of the sphere yields a scaling argument that successfully
predicts its width W . The balance between viscous and buoyancy forces suggests
(μU/W ) W 2 ∼ g�ρW 3, where �ρ ∼ N2ρ0W/g and vertical isopycnal deflections are
assumed to also scale with W . This yields W/a ∼ Ri−1/3, which is borne out by the
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Figure 12. (a) The width of the wake W as a function of Ri−1/3. (b) The length scale δ of
the fluid region responsible for the added drag, as a function of (Fr/Re)1/2. (c) The maximum

isopycnal deflection H as a function of Fr1/2. W , δ and H were computed from numerical
simulations as described in the text and non-dimensionalized by a.

numerical results in figure 12(a), where W was taken as the distance from the axis of
symmetry to the point where vertical isopycnal deflection decreased to 0.1a.

Instead, we propose that it is the buoyancy of a localized fluid region around the
sphere that determines the added drag. This is related to the work by Higginson
et al. (2003) at higher Re (∼ O(103)), where added drag on a rising grid of bars was
found to derive from the buoyancy of fluid in the drift volume. In our case, the fluid
volume affecting drag can be identified by considering the vertical velocity field w

(figure 13), which reveals that the wake is composed of two distinct regions: a lower
one surrounds the sphere and descends at nearly its same speed (w ∼ −1), dragged
down by viscous shear forces; the upper one ascends slowly (w > 0), due to isopycnals
retreating under the effect of buoyancy. It is then reasonable to hypothesize that the
buoyancy of the fluid immediately adjacent to the sphere is responsible for the added
drag, while the rest of the wake is simply a remnant of the sphere’s passage.

Here we rationalize the added drag by a scaling argument based on the buoyancy
of a fluid region dragged down by the sphere. For clarity, a dimensional formulation
is adopted. Assuming a spherical shell of width δ, the volume of this region scales as
πa2δ, while its density contrast is �ρ = H dρ/dz, where H is the maximum distance
an isopycnal is dragged down. The normalized drag coefficient can then be written as
the ratio of this buoyancy force and the homogeneous drag force:

CN
D − 1 ∼ πa2δg�ρ

CH
D

1
2
ρU 2πa2

∼ 1

Fr2

1

CH
D

δ

a

H

a
, (5.1)

where δ/a and H/a are still to be determined.
We propose that δ ∼ (ν/N )1/2, the natural length scale in a viscous and buoyant flow

(Gargett 1988; Saggio & Imberger 2001; Barry et al. 2001; Basak & Sarkar 2006;
Blanchette, Peacock & Cousin 2008), resulting in δ/a ∼ (Fr/Re)1/2. This was indeed
the scaling of the extent of the fluid shell around the sphere in our numerical data
(figure 12b), for which δ was operationally defined as the thickness of the region where
�ρ was >5 % of its maximum value, which occurred at the sphere surface. On the
other hand, despite considering several possibilities, we were unable to find an a priori
scaling for H . At higher Re ( ∼ O(103)), H/a ∼ Fr as a result of a balance between
kinetic and potential energy (Higginson et al. 2003), yet this is not applicable in our
regime where viscous dissipation is important. Hence, we resorted to an empirical
scaling, by computing H from simulations as the maximum isopycnal deflection
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Figure 13. (a) Density contrast �ρ and (b) vertical fluid velocity w in the wake of a settling
sphere for Ri= 0.29 (Re= 0.05,Fr = 0.42). The long wake (a) comprises two distinct regions
(b): the lower one travels at a speed comparable to that of the sphere (w ∼ −1).

immediately upstream of the sphere (z = −a). Figure 12(c) shows that H/a ∼ Fr1/2, in
line with our earlier observation that isopycnal deflection decreases with increasing
stratification. The residual Re dependence in figure 12(c) is very weak ( ∼ Re1/10) and
will be neglected.

With the aforementioned scalings, and using CH
D ∼ 1/Re (appropriate for small Re),

(5.1) reduces to CN
D −1 ∼ Ri1/2. This compares favourably with our result CN

D −1 ∼ Riq ,
where q = 0.62 from experiments, q = 0.41 from numerics, for an average of q =0.51.
While the excellent agreement between this mean value and the predicted figure of
1/2 is certainly somewhat fortuitous, the scalings from experiments and numerics
taken individually are also close to 1/2. These results suggest a new expression for
the drag coefficient in a salt-stratified ambient

CS
D =

(
12

Re
+

6

1 +
√

2Re
+ 0.4

)
(1 + αRi1/2), (5.2)

where α = 1.9 (α = 1.95 and 1.91 in experiments and numerics, respectively). This
rationalization of the added drag also applies to the moderate Re regime, where the
dragged-down region scales with the drift volume ( ∼ a3), H/a ∼ Fr (Higginson et al.
2003) and CH

D ∼ Re0, resulting in CN
D − 1 ∼ Fr−1, which is verified by analysis of the

data in Torres et al. (2000) and is in agreement with Higginson et al. (2003).
In general, the problem of a sphere settling through a stratified fluid further depends

on Pr. While our study focused on salt stratifications (Pr =700), the case of a thermal
stratification (Pr = 7) is also of relevance in aquatic environments. For this case,
simulations show a smaller increase in drag due to stratification (figure 4) and a
weaker dependence on Ri (q = 0.29). This can be rationalized by considering that
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Figure 14. Numerical density field ρ − ρ(0) for (a) Pr =7, (b) Pr = 100 and (c) Pr = 700. In
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Figure 15. (a) Trajectory of an a = 196 μm sphere settling in stratified fluid with N = 2.92 s−1,
determined experimentally (solid line) and predicted using the stratified drag coefficient from
(5.2) (dashed line). Also shown is the trajectory of the same particle assuming a locally
homogeneous drag formulation, (2.2) (dotted line). The particle reaches neutral buoyancy at
�z =0.0192. (b) The ratio of travel times computed using a stratified drag coefficient versus a
locally homogeneous one, as a function of particle size a, density contrast �ρ and stratifica-
tion N .

stronger diffusion more effectively counteracts the accumulation of buoyancy forces
by more rapidly smoothing out isopycnal deflections. This is shown in figure 14,
which compares the wake for Pr = 7, 100 and 700: isopycnal deflections decrease
with Pr (see also figure 12c) and the wake becomes shorter and wider (see also
figure 12a).

The observed added drag implies that a sphere settles more slowly in a stratified
fluid than predicted using homogeneous-fluid formulations. Figure 15(a) shows the
experimental trajectory of an a = 196 μm sphere in a stratification with N =2.92 s−1,
compared to its expected trajectory in a homogeneous fluid. The distance travelled
over 20 s is roughly 40 % less in the stratified case, and is predicted to within 5 %
by our drag coefficient formulation (5.2). How important is this effect in natural
stratified environments? Some of the strongest aquatic stratifications are found in
inlets, fjords and river outflows, where freshwater overlying saltier water can result
in N being as large as 0.2 s−1 (Farmer & Armi 1999, figure 2A). While freshwater
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lakes can be nearly as strongly stratified due to temperature (Patterson, Hamblin
& Imberger 1984; King, Shuter & Zimmerman 1999), the corresponding Prandtl
number is much smaller and the influence of stratification therefore reduced. Heading
further out into the ocean, density gradients are generally weaker, reaching maximum
values on the order of N ∼ 0.02 s−1. The role of salt stratifications was investigated
by plotting the ratio of stratified to homogeneous travel time (figure 15b); these were
found by integrating the settling speed U , determined numerically from (2.3) using
the stratified (see (5.2)) and homogeneous (see (2.2)) drag coefficients. This procedure
was repeated for a range of particle sizes up to a = 2500 μm and three values of
the density contrast �ρ = 1, 5 and 20 kg m−3, representative of biological matter. The
effect of stratification increases with particle size, as expected from the Ri dependence.
In the open ocean we predict the increase in settling time due to stratification is <6 %,
rising significantly to 66 % for strongly stratified fjords and inlets. This suggests that
the effect of stratification on settling time needs to be accounted for in strongly
stratified natural water bodies. We expect this effect to be compounded by hindered
settling due to particle–particle interactions in particle clouds (Bush, Thurber &
Blanchette 2003; Blanchette & Bush 2005). Finally, we note that these results apply to
particles much smaller than the characteristic length scale of the stratification g/N2

(>1 m for N2 < 10 s−2), the situation that is by far the most common in stratified
environments.

6. Conclusions
We have presented a combined experimental and numerical investigation of the fluid

mechanics of a sphere settling in a linearly stratified fluid at small Reynolds numbers.
This study provides the first experimental evidence of stratification-induced enhanced
drag in a continuously stratified fluid at small Re, further supported by numerical
simulations. The increase in drag is governed by a single dimensionless parameter,
the viscous Richardson number, expressing the relative importance of buoyancy and
viscous shear forces. The normalized drag coefficient CN

D was found to scale like
1 + 1.9 Ri0.51, with a small discrepancy in the exponent (±0.1) between numerics and
experiments. Microscale synthetic schlieren revealed that a particle’s signature lingers
long after the particle has passed, producing an extended wake in which density is
perturbed. Careful analysis of the flow and density fields showed that only a minor
portion of the wake is responsible for the added drag, enabling us to rationalize
observations via a scaling argument. The added drag decreases with Pr, as diffusion
increasingly counteracts buoyancy. This effect is relevant to strongly stratified aquatic
environments (e.g. inlets and fjords, and to a lesser extent the open ocean and lakes),
where it can enhance retention of biological material at density interfaces (MacIntyre
et al. 1995) and colonization of marine snow aggregates by micro-organisms
(Stocker et al. 2008), ultimately affecting vertical fluxes of matter in biogeochemical
cycles.
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