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Abstract

Lagrangian GPS drifter experiments, carried out in the surface layer of stratified Lake Kinneret (Israel), are
presented. Differential kinematic properties and Lagrangian statistics were calculated and used to estimate the
dominant mechanisms for horizontal dispersion. On time scales smaller than a few internal wave periods, internal
waves lead to strong divergence and convergence events, causing instantaneous apparent horizontal growth rates
that were larger, by up to an order of magnitude, than the actual mean dispersion coefficient. It is shown that the
internal wave field modulated the vorticity field so as to satisfy conservation of potential vorticity. On time scales
larger than a few internal wave periods, unbounded horizontal shear dispersion was of the same order as the actual
mean observed dispersion coefficient (Kxy 5 17.1 m2 s21), while vertical shear dispersion was negligible.

In a stratified lake, the surface layer is where most pri-
mary production takes place. Knowledge of the processes
responsible for horizontal dispersion is therefore of key im-
portance in understanding the biological dynamics of a lake.
Small- to medium-sized lakes, in particular, are of ubiquitous
nature and importance. Despite this, very few horizontal dis-
persion studies exist for lakes of these sizes, and those that
do exist are often limited to the hypolimnion (Quay et al.
1979; Peeters 1994; Lawrence et al. 1995; Peeters et al.
1996). The size of a lake is interpreted here in terms of the
effect of the Earth’s rotation on the lake’s response to ex-
ternal disturbances, summarized by the Burger number S 5
c/Lf (Antenucci and Imberger 2001), where c is the nonro-
tating internal wave phase speed, f the Coriolis frequency,
and L the horizontal dimension of the lake. In large lakes
and in the ocean, rotation confines the motion to the bound-
aries (S → 0), in medium lakes it influences the basin-scale
response through a balance with stratification (S is O(1)),
while in small lakes rotational effects are negligible (S →
`).

While so far no evidence exists that the Burger number
directly affects dispersion processes, it will be shown that
large-scale divergence and convergence events are associ-
ated with the internal wave field, whose shape and amplitude
are in turn strongly dependent on the Burger number. For
example, Antenucci et al. (2000) presented the seasonal evo-
lution of the internal wave field in terms of the Burger num-
ber, finding that resonance conditions can be established as
the stratification changes, while Stocker and Imberger (in
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press) showed that the partitioning of energy between waves
and non–wave-like motions is governed by the Burger num-
ber.

Field studies commonly lump all mechanisms responsible
for horizontal dispersion into a single empirical law relating
the rate of growth of a tracer cloud, or dispersion coefficient,
to its size (Okubo 1971; Murthy 1976; Lawrence et al.
1995). In this respect, a unifying approach has been intro-
duced by Okubo (1971): by converting measured distribu-
tions into equivalent radially symmetric ones, whose vari-
ance is s , a standard reference scale for dispersion is2

r

defined as dr 5 3sr. An apparent dispersion coefficient is
computed from the elapsed time t as

2s rK 5 (1)a 4t

and usually reported as a function of dr in the form

Ka 5 badr (2)

For the surface layer, Lawrence et al. (1995) combined
data from several oceanic studies presented in Okubo (1971)
with results by Murthy (1976) for Lake Ontario and with
their own data from a very small lake, finding a 5 3.20 3
1024 m0.9 s21 (the fractional exponent is dimensionally re-
quired) and b 5 1.10, for scales dr ranging from 10 to 105

m. While the outcomes of such investigations are of consid-
erable practical usefulness (Lawrence et al. 1995; Sunder-
meyer and Ledwell 2001), they can lead to misinterpreta-
tions of the mechanisms underlying dispersion (Murthy
1975) and ‘‘must remain provisional until the physical pro-
cesses giving rise to diffusion are well understood,’’ as
pointed out by Okubo (1971).

The growth of a tracer cloud in the surface layer is gov-
erned by several mechanisms. Irreversible spreading, or dis-
persion, is caused by fluctuations in the velocity field at
scales smaller than the cloud that contribute to the cloud’s
growth in the form of turbulent dispersion (Fischer et al.
1979); by horizontal velocity gradients in the flow field at
scales larger than the cloud that together with small-scale
horizontal fluctuations cause horizontal shear dispersion (Fi-
scher et al. 1979); and by vertical gradients in the flow field,
which associated with small-scale vertical fluctuations yield
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Table 1. Details of the six drifter experiments carried out in Lake Kinneret in 2001. Texp is the
duration of the experiment and Ttot the total number of drifter hours available. Drifters 1 to 4 were
drogued at 5-m depth, drifter 5 at 2.5 m, and drifter 6 at 8 m (experiment 5) and 8.5 (experiment
6). Deployment and retrieval are given in local time and refer to year 2001.

Experiment Drifters Deployment Retrieval
Texp

(h)
Ttot

(h)

1
2
3
4
5
6

1,2,3,4
1,2,3,4
1,3,4
1,2,3,4
1,2,3,4,5,6
1,2,3,4,5,6

1855 h, 23 April
1945 h, 29 April
2135 h, 2 May
2200 h, 8 May
0920 h, 19 June
1800 h, 24 June

0700 h, 25 April
1030 h, 1 May
0820 h, 6 May
0910 h, 11 May
0810 h, 22 June
0845 h, 2 July

36
39
82
57
94.5

183

81
155
248
228
567
653

vertical shear dispersion (Bowden 1965). A comprehensive
understanding of horizontal dispersion requires a separate
quantification of each of these mechanisms.

For short times, in the order of a day, it will be shown
that the horizontal extent of a cloud is dramatically affected
by internal wave-driven divergence and convergence events.
As an internal wave propagates, the thermocline rises and
falls, causing divergent and convergent flows in the surface
layer, respectively. Murthy (1975) found that such conver-
gence events are capable of masking the dispersive action
of turbulence when only the horizontal extent of the cloud
is measured. Stocker and Imberger (2003) showed that the
superposition of internal waves upon a steady geostrophic
flow can enhance horizontal dispersion for small values of
the Burger number (medium-sized lakes), a mechanism they
called pseudochaotic advection, that can be dominant over
turbulent dispersion for large clouds and large time scales.
Despite these considerations, the effects of basin-scale in-
ternal waves on the growth of a cloud are still lacking field
verification.

In order to quantify the dominant horizontal dispersion
mechanisms, with particular focus on the role of internal
waves, GPS-tracked drifters were released during stratified
conditions in the surface layer of Lake Kinneret (Israel), a
lake of medium size (S ø 0.65). Interestingly, no other com-
prehensive drifter studies have been carried out so far in
small- to medium-sized lakes, while other environments
have been extensively investigated, from the deep (Freeland
et al. 1975; Krauss and Böning 1987; Richez 1998) to the
near-surface ocean (Colin de Verdiere 1983; Poulain and Ni-
iler 1989; Paduan and Niiler 1993; Sanderson 1995), coastal
regions (List et al. 1990), the coastal transition zone (Haynes
and Barton 1991), channels (Dever et al. 1998), and very
large lakes (Csanady 1963; Murthy 1975, 1976; Sanderson
and Okubo 1986; Palmer et al. 1987; Sanderson 1987; Muzzi
and McCormick 1994; Okumura and Endoh 1995; Pal et al.
1998).

Drifters have both advantages and disadvantages when
compared to tracers. Drifter studies are characterized by a
greater experimental flexibility and the possibility of a much
higher sampling frequency, due to improvements in tracking
technology over recent years. On the other hand, tracers in-
clude spreading due to vertical shear dispersion and therefore
represent the total fate of a diffusive substance (Peeters
1994). Thus, since drifters are not subject to vertical shear

dispersion, they are representative of the behavior of diffu-
sive substances only when vertical shear dispersion is small
compared to horizontal shear dispersion. As will be shown,
this was in fact the case in our study. It is worth noting that,
while a drifter drogued at a fixed depth in a stratified envi-
ronment does not in general represent the flow field appro-
priately because it is unable to follow the vertical excursions
of the isopycnals, this limitation does not apply to the sur-
face layer, which is typically well mixed and of approxi-
mately uniform velocity.

The development of a substantial body of theory allows
the extraction of a wide range of information from single
trajectories (Colin de Verdiere 1983; Haynes and Barton
1991) as well as from clusters of drifters (Molinari and Kir-
wan 1975; Okubo and Ebbesmeyer 1976; Sanderson 1995),
even for small numbers of drifters (often 4 to 10). Cluster
analysis (Molinari and Kirwan 1975; Okubo and Ebbesmey-
er 1976; Sanderson 1987) was applied for the first time to
drifter experiments in a lake, allowing the determination of
Lagrangian velocity gradients and smaller scale, residual
motions. This information, used in conjunction with simple
models from the literature, provided insight into the domi-
nant mechanisms governing the growth of a cloud.

The field experiment

The data—Six drifter experiments (Table 1) were carried
out in the surface layer of Lake Kinneret between spring and
summer of 2001. Lake Kinneret (Israel, 328509N, 358359E)
has a compact, elliptical shape, 20 km in length and 10 km
in width (Fig. 1). At the time of these experiments, the water
level was 213 m below mean sea level, resulting in a surface
area of 161 km2, a volume of 3.7 km3, a maximum depth of
39 m, and an average depth of 22.7 m (see fig. 2 in Serruya
1975).

The drifters, described by Johnson et al. (pers. comm.),
were deployed at different locations in the lake, with a focus
on the western shallows. They were drogued at depths be-
tween 2.5 and 8.5 m (Table 1). The sampling frequency was
0.1 Hz and the precision was 10-m horizontal root mean
square. The error on the relative position of two drifters has
been estimated from separate tests to be less than 5 m (95%
confidence). Discrepancies between the motion of the drift-
ers and that of water parcels caused by factors such as wind-
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Fig. 1. Map of Lake Kinneret. The six stations in the lake (cir-
cles) measured water column temperatures and wind speed and di-
rection. In addition, wind was measured at Tabgha and En Gev. Fig. 2. Trajectories of the drifters in experiments (a) 3, (b) 4,

(c) 5, and (d) 6. The dates of each experiment (2001) are given.
Circles indicate locations of deployment and are magnified in the
inset for experiments 5 and 6. Triangles indicate locations of retriev-
al. The depths of the drifters and details about their deployment are
given in Table 1.

induced slippage and the finite size of the drogues were sum-
marized, for example, by Murthy (1975) and Haynes and
Barton (1991). The raw position data were checked against
beaching, then low-pass filtered with a cutoff period of 15
min. Trajectories for four experiments are shown in Fig. 2.
Velocities were computed by center differences, filtered, and
subsampled at 15 min.

The wind speed and direction were measured at eight lo-
cations (see Fig. 1) for almost the entire duration of the
experiments. Wind data were low-pass filtered and subsam-
pled at 15 min, then corrected to 10-m elevation above mean
water level following Amorocho and DeVries (1980). In
spring the wind field was highly irregular, while the regu-
larity of westerly sea breezes, reaching speeds in excess of
12 m s21, characterized the summer period (Fig. 3a,b). Water
column temperatures were measured at six stations (see Fig.
1), revealing the dramatic internal wave field, with ampli-
tudes in excess of 10 m (Fig. 4), excited by the periodic
wind forcing (see also Antenucci et al. 2000).

Experiment 5—The analysis will focus on experiment 5
(Fig. 2c), which had the largest number of drifters deployed

(six) and excellent wind and water temperature data from all
stations. After being advected by a swift, wind-driven off-
shore current for the initial 15 h, the drifters revealed the
typical cyclonic circulation first detected by Serruya (1975)
and confirmed by numerical simulations of Pan et al. (2002).
The horizontal convex hull (the smallest convex polygon)
formed by the six drifters is shown in Fig. 5 at intervals of
15 h, along with trajectories relative to the centroid. The
mean initial distance between two successive drifters was
approximately 100 m (Fig. 2c, inset). By comparing the final
(Fig. 5b) to the initial (Fig. 2c, inset) position of the drifters
relative to their centroid, two things become apparent. First,
part of the cluster’s growth was due to vertical shear in the
horizontal velocity field, as indicated by the trajectory of the
deepest drifter (number 6, 8-m depth). The latter moved
southward and away from the centroid at an average speed
of 3 cm s21, reaching a final distance of 6.5 km and thus
substantially increasing the apparent horizontal area of the
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Fig. 3. (a) Wind speed and (b) direction recorded at station TF (see Fig. 1) and corrected to
10-m elevation above mean water level. (c) Curl of the wind stress field, from measurements at the
eight stations shown in Fig. 1. The shaded area delimited by thick vertical lines indicates the period
of experiment 5, for which an additional time scale in hours since deployment is given.

Fig. 4. Stratification at station TF (see Fig. 1) during experiment 5. Time is in hours from
deployment of the drifters.

cluster. Interestingly, it will be shown in a later section that
vertical shear dispersion was negligible despite the strength
of vertical shear apparent from the behavior of drifter 6.
Second, vertical shear was strongest below 5 m, as suggested
by the shallowest drifter (number 5, 2.5-m depth) behaving
in a similar fashion to the drifters at 5-m depth. Consider-
ation of all six drifters increased the mean bulk horizontal
dispersion coefficient by about a factor of three, but discus-
sion will focus on the four drifters at 5 m depth, hereafter
referred to as the reduced cluster.

Transport at short time scales

In this section, the effect of internal waves on the growth
of the reduced cluster is investigated. Because of conserva-
tion of volume, positive (negative) vertical excursions of the
thermocline associated with an internal wave correspond to
convergence (divergence) events in the surface layer (the
positive vertical direction being upward). For a cluster
whose size is comparable to the horizontal scale of the in-
ternal wave, this translates into a contraction (expansion)
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Fig. 5. (a) Convex hull (smallest convex polygon) formed by
the six drifters in experiment 5, represented every 15 h from de-
ployment. Numbers in square brackets indicate depth of deploy-
ment. The convex hull is defined as the smallest (convex) polygon
including all drifters. Every second polygon has been drawn with
a thick line for better visualization. (b) Trajectories of the same six
drifters relative to their centroid.

Fig. 6. (a) The area of the convex hull (smallest convex poly-
gon) formed by the reduced cluster in experiment 5. (b) Standard
deviations sx and sy along the x and y directions and two-dimen-
sional standard deviation sxy 5 (s 1 s )1/2. (c) Overall dispersion2 2

x y

coefficient Kxy 5 0.5 ds /dt. Time is given in hours from deploy-2
xy

ment.

proportional to the amplitude of the wave. These events
strongly affect the surface layer thickness and hence the ver-
tical wind-driven mixing and will be shown in the following
to have occurred during experiment 5 from time series of
the cluster’s area (Fig. 6a), computed as the surface area of
the convex hull, and from time series of the standard devi-
ations of the drifters’ distribution (Fig. 6b). Standard devi-
ations, sx and sy along the x and y directions (where x and
y are positive to the east and to the north, respectively) are
shown together with the two-dimensional standard deviation
sxy 5 (s 1 s )1/2. Dispersion coefficients, defined for ex-2 2

x y

ample as Kx 5 0.5 ds /dt for the x direction, were also2
x

computed, and Kxy is shown in Fig. 6c. Their mean values
were Kx 5 7.8, Ky 5 9.3, and Kxy 5 17.1 m2 s21.

Dispersion coefficients will be analyzed in more detail in
the next section. Of interest here are the very pronounced,
periodic oscillations apparent in Fig. 6a,b. After a first day
characterized by very slow growth, two large divergence–
convergence events were observed, beginning 28 and 48 h
after deployment, respectively. During the first event the area
temporarily increased by a factor of 7 in only 15 h and
subsequently reduced again by 2.5 times over 7 h. A third
and even larger event appeared to follow at 72 h but was
unfortunately interrupted by retrieval of the drifters. These
events are characterized by instantaneous horizontal growth
rates that were an order of magnitude larger than the mean
dispersion coefficient Kxy 5 17.1 m2 s21. The periodic nature
of Kxy (Figs. 6c) suggests that the oscillations were caused
by internal waves, with the convergence events represented
by the large, negative lobes exhibited by the overall disper-
sion coefficient. Indeed, the period of 24 h is in good agree-
ment with the period of the dominant internal waves (see
Fig. 4 and Antenucci and Imberger 2001). Although these
oscillations represent reversible expansions and contractions
of the horizontal plane area of the clusters, they may be
expected to have a large impact on the dynamics of the sur-
face layer. For example, they modulate the thickness of the

surface layer and therefore its susceptibility to vertical wind-
driven mixing over times comparable to the internal waves’
period. Furthermore, by periodically lifting the thermocline,
they may affect the light availability for phytoplankton,
whose dynamics are therefore directly influenced by the pe-
riod and by the phase of the internal waves with respect to
their own daily life cycle. The period of the internal waves
is, in turn, a function of the Burger number (Gill 1982) and
typically in the order of a day for medium-sized lakes (An-
tenucci and Imberger 2001). Conservation of potential vor-
ticity will be used in a later subsection to fully describe the
implications of this mechanism. First, however, the differ-
ential kinematic properties of the flow field need to be com-
puted.

Cluster analysis—Cluster analysis proves very convenient
in analyzing the large-scale properties of the flow and there-
fore in exploring further the effect of internal waves. Given
a record of drifter velocities, cluster analysis allows com-
putation of time series of Lagrangian velocity gradients
(]u/]x, ]u/]y, ]v/]x, ]v/]y, where u and v are the velocities
in the x and y directions, respectively), considered uniform
over the area of the cluster. These gradients can be combined
into differential kinematic properties, defined as

z 5 ]v /]x 2 ]u/]y vorticity (3a)

d 5 ]u/]x 1 ]v /]y divergence (3b)

a 5 ]u/]x 2 ]v /]y stretching deformation (3c)

b 5 ]v /]x 1 ]u/]y shearing deformation (3d)

Differential kinematic properties for the reduced cluster are
shown in Fig. 7 and summarized in Table 2. The very large
initial values of the differential kinematic properties are due
to the inadequate separation of the drifters, deployed along
a line (Fig. 2c, inset) with the initial purpose of capturing
the influence of small variations in the cross-shore location.
The initial cluster was therefore too stretched to behave two
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Fig. 7. (a) Area, (b)–(e) differential kinematic properties, and (f) Truesdell’s kinematical vortic-
ity number TK 5 [z2/(a2 1 b2)]1/2, for the reduced cluster in experiment 5. The area is repeated
from Fig. 6 for ease of interpretation. Among the differential kinematic properties (b) z is vorticity,
(c) d is divergence, (d) a is stretching, and (e) b is shearing. Units for panels (b) to (e) are 1024

s21, while TK is dimensionless. Note the different vertical scale used for vorticity. Time is in hours
from deployment. The events at 47.5 and 72 h are indicated. Deployment and retrieval times are
also given in days in 2001.

Table 2. Differential kinematic properties and kinematical vor-
ticity number TK during experiment 5 as computed from cluster
analysis for the four drifters drogued at 5-m depth and for all six
drifters. The first 7 h of the experiment have been neglected. Mean
values and standard deviations are given.

4 drifters
(1025 s21)

6 drifters
(1025 s21)

Stretching
Shearing
Vorticity
Divergence
TK (no units)

a
b
z
d

0.466.0
3.465.8
8.265.8
1.866.9
1.461.1

0.863.8
2.563.9
6.864.3
2.165.0
1.761.0

dimensionally, and the first 7 h are not considered in the
analysis. The cluster stretched in the east–west direction for
the first 2 d and in the north–south direction for the last 2
d. Horizontal divergence was positive on average, but two
temporally localized periods of strong horizontal conver-
gence were observed after 41 and 66 h of deployment, re-

flecting the contractions due to internal waves discussed
above.

Vorticity was the dominant horizontal kinematic prop-
erty, as seen from Fig. 7c, and assumed positive values for
most of the time. Two indicators of the relative importance
of the vorticity field with respect to the strain field (stretch-
ing plus shearing deformation) are the kinematical vorticity
number TK 5 [z2 /(a2 1 b2)]1/2 (Truesdell 1954), where a,
b, and z are defined in Eq. 3, and the Okubo–Weiss param-
eter Q 5 a2 1 b2 2 z2 5 (a2 1 b2)(1 2 T ). The latter is2

K

often used to describe dispersion in two-dimensional tur-
bulence (see Provenzale 1999, and references therein).
When TK . 1 (Q , 0), the vorticity field is stronger than
the strain field and eddy-like structures are present (elliptic
regions), while for TK , 1 (Q . 0) the strain field domi-
nates, corresponding to zones of convergence or divergence
(hyperbolic regions) where dispersion is stronger (Klein
and Hua 1990; Provenzale 1999). During experiment 5, TK

was consistently larger than one after about 18 h, with an
average value of 1.5 (Table 2). For very large values of TK,



977Horizontal transport and dispersion

Fig. 8. The Okubo–Weiss parameter Q 5 a2 1 b2 2 z2 versus
the divergence d of the reduced cluster in experiment 5. The quan-
tities a, b, z have been defined in Fig. 7. Mean values (triangle)
and median values (square) are shown.

the cluster rotates almost without changing its shape, as
happened from 55 to 65 h after deployment. The Okubo–
Weiss parameter is plotted against divergence in Fig. 8. The
median values indicate that most of the time the cluster was
rotating but not diverging. Divergence was largest when the
strain field dominated over the vorticity field (TK , 1, Q
. 0). Indeed, for Q . 0, ^d& 5 0.48 3 1024 s21, while for
Q , 0, ^d& 5 0.06 3 1024 s21, the angular brackets denoting
a time average. In the following subsection these obser-
vations are reinterpreted in terms of potential vorticity, al-
lowing us to link the differential kinematic properties with
the convergence–divergence events caused by internal
waves.

Conservation of potential vorticity—A striking feature
about the reduced cluster is the coincidence of two peaks in
vorticity after 47 and 72 h (Fig. 7a) with two local minima
in the cluster’s area (Fig. 6a). This can be explained in terms
of conservation of potential vorticity, whereby the vorticity
is larger when the area is smaller. Following Gill (1982),
potential vorticity for the surface layer, considered to be
shallow and homogeneous, is defined as

f 1 z
P 5 (4)

h 2 h1

where h is the interface displacement, positive upward, and
h1 the surface layer thickness at rest. In the absence of
dissipation and following the motion, it can be shown that
the potential vorticity of each fluid column evolves accord-
ing to

DP j 1 g
5 (5)

2Dt (h 2 h)1

with

1 ]t ]ty xj 5 2 (6a)1 2r ]x ]yw

1 ]h ]h
21g 5 t 2 t (h 2 h) (6b)y x 11 2r ]x ]yw

where (tx ,ty) 5 raCd(u 1 v )1/2(uw, vw) is the wind stress,2 2
w w

(uw, vw) is the wind velocity at 10 m height, Cd 5 1.2 3
1023 is a drag coefficient, and rw and ra are representative
water and air densities, respectively. Equation 5 states that
potential vorticity of fluid columns in the surface layer can
be modified by wind forcing but is otherwise conserved.

To estimate P from Eq. 4, the vorticity z determined from
cluster analysis (Fig. 7c) was used. The interface displace-
ment h was determined from thermistor chain data and rep-
resented the quantity with the largest uncertainties, involving
a spatial interpolation of the temperature profile at the lo-
cation of the drifters’ centroid. Since potential vorticity is
conserved in a Langrangian sense, all quantities in Eq. 5
have to be computed following the fluid column located at
the centroid. With the 26.28C isotherm representative of the
thermocline (see Fig. 4), the position of this isotherm in time
at the instantaneous location of the centroid defines the in-
stantaneous thickness of the fluid column (h1 2 h in Eq. 4)
in the absence of heat inputs (i.e., when isotherms are ma-
terial surfaces). However, when surface heating or cooling
are present, their contribution to isotherm displacement has
to be separated out in order to determine the thickness of
the fluid column. This was done as follows. At any given
time step, the temperature profile at the position of the cen-
troid was interpolated from all thermistor chains (except T7,
too distant from the cluster), with weighting factors propor-
tional to the inverse squared distance between the centroid
and each chain. The variation in the surface temperature at
the position of the centroid from the previous time step was
used to compute the heat input (solar radiation data might
have been used instead, involving one further spatial inter-
polation, but given the resulting small influence of surface
heat inputs this was not necessary). This heat input allowed
the computation of the temperature variation at the base of
the fluid column (with a light extinction coefficient of 0.5
m21; the total temperature variation over experiment 5 re-
sulted in less than 0.028C. The new temperature was then
used to find the new thickness of the fluid column.

The thickness of the centroid fluid column is represented
in Fig. 9a as a function of time, and its mean value (11.0
m) was taken as h1. This yielded a potential vorticity for the
lake at rest of P0 5 f/h1 5 0.090f m21. The interface dis-
placement h is the difference between h1 and the instanta-
neous interface depth. The evolution of P is shown in Fig.
9b. After an initial increase, potential vorticity settles to an
approximately constant value of around 0.2. Let us assume,
as a first approximation, that P was constant after 14 h from
deployment, thereby neglecting the wind forcing in Eq. 5.
The value of P that best fits Eq. 4 is P̄ 5 0.196f m21, more
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Fig. 9. (a) Depth of the interface h (dashed line) and of the
bottom (solid line) as seen by the centroid of the reduced cluster in
experiment 5. The interface is defined as the depth of a water parcel
initially lying on the 26.28C isotherm and is computed by interpo-
lation from the six thermistor chains (see Fig. 1). The depth of the
bottom is interpolated from the bathymetry of the lake. (b) Potential
vorticity P of the reduced cluster normalized by the planetary vor-
ticity f. Note that the potential vorticity at rest is P0 5 0.090f m21.
Time is given in hours from deployment.

Fig. 10. Vorticity of the reduced cluster in experiment 5 com-
puted from cluster analysis (solid line), compared to that computed
from conservation of potential vorticity P in Eq. 7 (dashed line).
The interface displacements h are taken from Fig. 9. Vorticity has
been normalized by the planetary vorticity f. Time is given in hours
from deployment.

Fig. 11. Divergence of the reduced cluster in experiment 5 com-
puted from cluster analysis (solid line), compared to that computed
from the vorticity equation, Eq. 8 (dashed line). The second signal
has been low-pass filtered at 3 h to smooth out the noise introduced
by the numerical time derivative. Time is given in hours from de-
ployment.

than twice the potential vorticity at rest. Using Eq. 4 with P
5 P̄, the relation DP/Dt 5 0 can be rewritten as

¯z P(h 2 h)15 2 1 (7)
f f

The left- and right-hand sides of this equation are compared
in Fig. 10. Considering the uncertainties in the determination
of h, the agreement is remarkable, implying that potential
vorticity was conserved over time scales of a few days.

As a verification, a different approach was adopted. Gill
(1982) showed that when potential vorticity is conserved the
divergence can be computed from the vorticity equation as

1 dz
d 5 2 (8)

z 1 f dt

The two estimates of divergence obtained by substituting the
differential kinematic properties of the reduced cluster (Fig.
7) in this equation are compared in Fig. 11 for the period
ranging from 41 to 82 h. The right-hand side has been fil-
tered at 3 h to smooth out the noise introduced by the nu-
merical time derivative. From 62 to 82 h the quantitative
agreement is again surprisingly good. This reflects the fact
that the divergence field of the internal waves forced the
cluster to expand and contract, ultimately increasing or de-
creasing its relative vorticity, so that potential vorticity was

conserved. This mechanism is effective when the size of the
cluster is comparable to the wavelength of the internal
waves, which scales like the Rossby radius of deformation
R 5 c/f (Gill 1982). At the latitude of Lake Kinneret f 5
7.9 3 1025 s21, while from thermistor chain data c ø 0.33
m s21 (see also Antenucci et al. 2000), yielding R ø 4.2 km.
For the two events at 47.5 and 72 h discussed above, Fig.
6b shows that the size of the cluster was comparable to the
Rossby radius. As a confirmation, we note that a further peak
in vorticity, 20 h after deployment, was not matched by a
local minimum in the cluster’s area (Fig. 6a): since the size
of the cluster at this point was still much smaller than the
scale of the internal waves, the cluster did not respond to
the divergence field of the waves but was simply advected
by them. This discussion also sheds light on the effects of
changing the initial area of the cluster, with a larger (smaller)
initial area implying the cluster would begin responding to
the internal wave field earlier (later).
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Fig. 12. The apparent radially symmetric dispersion coefficient
for the reduced cluster in experiment 5 as estimated from Eq. 1
using s 5 2smaxsmin (Murthy 1976) (solid line) and from Eq. 22

r

with a 5 3.20 3 1024 m0.9 s21 and b 5 1.10 (Lawrence et al. 1995)
(dashed line). Time is given in hours from deployment.

The wind forcing—An estimate of the effect of the wind
field on the potential vorticity balance (Eq. 5) was attempted
using the wind data from eight stations (see Fig. 1) to eval-
uate the two forcing terms in Eq. 6. Cluster analysis applied
to the wind stress field in an Eulerian sense (the positions
of the eight stations being fixed) allowed the computation of
the wind stress curl, shown in Fig. 3c. During experiment 5,
both the magnitude of the wind speed (Fig. 3a) and the wind
stress curl (Fig. 3c) were atypically weak for summer con-
ditions. Therefore, the 2 week period represented in Fig. 3
was considered more representative for the effects of wind
forcing. The afternoon sea breeze was typically characterized
by a strong, negative wind stress curl, contradicting findings
by Pan et al. (2002).

Estimating j 5 25 3 1029 m s22 from Fig. 3c and (h1 2
h)2 ø h yields a rate of change of potential vorticity of 5f2

1

3 1027 m21 s21, which, for a typical value of P 5 0.1f m21

(Fig. 9b), indicates that the wind field would have influenced
potential vorticity on time scales in the order of 2 d. While
recent numerical simulations by Marti and Imberger (pers.
comm.) seem to substantially confirm this estimate, sug-
gesting a spin-up time in the order of 1 d, several uncer-
tainties remain. First, the wind stress curl was not steady
over any 2 d (Fig. 3c). Second, the influence of the shallow
regions (depth less than h1) is not taken into account by this
scaling analysis. Third, the second forcing term in Eq. 5,
representing the coupling of a uniform wind with interface
gradients, was potentially of the same order as the first one
for wind speeds as small as 5 m s21 as seen by assuming an
interface gradient of 1023 (a 10 m interface displacement
over 10 km) and (h1 2 h)3 ø h . These uncertainties make3

1

it difficult to compute a more precise time scale over which
wind forcing affected the potential vorticity balance in the
surface layer.

Dispersion at intermediate time scales

Overall observed dispersion—While experiment 5 only
spanned a few internal wave periods, it is evident from Fig.
6a,b that underlying the periodic convergence–divergence
events there was a net growth in the size of the cluster.
Indeed, we found an average value of Kxy 5 17.1 m2 s21

from Fig. 6c, small compared with the instantaneous growth
rates, but significant in view of the fact that internal waves
do not cause any mean net growth. In this section we in-
vestigate the mechanism responsible for this overall disper-
sion.

While the standard deviations of the cluster (see Fig. 6b)
clearly did not obey a simple linear growth rate, it is nev-
ertheless interesting to see whether Okubo’s empirical for-
mulation (Eq. 2) describes the growth rate of the cluster
appropriately as a function of its size. This was done in Fig.
12 by comparing the two estimates for Ka from Eqs. 1 and
2, where the relation for Gaussian distributions s 52

r

2smaxsmin (Murthy 1976) has been used. The reasonably good
agreement that can be observed implies the size of the clus-
ter grew like dr 5 0.7 3 1022 t1.11, which is confirmed by
the approximately linear increase in time at a rate of 1 cm
s21 exhibited by the mean distance of the drifters from their
centroid (not shown).

A common theoretical interpretation for the success of Eq.
2 is based on Richardson’s 4/3 law (Richardson 1926; Batch-
elor 1952). As a cloud grows, larger and larger eddies con-
tribute to its dispersion, causing the dispersion coefficient to
grow with the size of the cloud. Okubo (1971) showed that
for a wide range of experiments b 5 4/3 within each ex-
periment, and recently Stacey et al. (2000) suggested this
value to hold also for the near-coastal environment. When
data from several experiments are combined, b is somewhat
less than 4/3, specifically 1.10 (Lawrence et al. 1995). How-
ever, it seems unlikely that the range of eddies postulated by
Richardson’s law would develop in the surface layer of a
stratified, bounded basin of compact shape like Lake Kin-
neret, where the largest eddies are likely to scale with the
depth of the surface layer (see, e.g., Csanady 1963). There-
fore, while there is no conclusive evidence of this latter
point, it is suggested that an alternative mechanism, namely
unbounded horizontal shear dispersion, was responsible for
the observed dispersion rates, while also yielding a 4/3 pow-
er law dependence similar to Eq. 2 (Fischer et al. 1979).
This hypothesis is supported by the large values of the hor-
izontal velocity gradients, exceeding by almost one order of
magnitude those measured in the ocean (e.g., Molinari and
Kirwan 1975; Sanderson 1995; Richez 1998). Before at-
tempting to estimate the magnitude of horizontal shear dis-
persion, however, a quantification of the diffusivities due to
small-scale motions is required.

Observed diffusivities—An estimate of the diffusivities as-
sociated with the small-scale motions, interpreted as the re-
sidual velocities computed from cluster analysis, was ob-
tained in two ways. Following Okubo and Ebbesmeyer
(1976), we can take the turbulence intensity to be propor-
tional to the standard deviation of the residual velocities
(su, sv) and the mixing length scale proportional to the stan-
dard deviation of the drifters’ displacements (sx, sy), yield-
ing kx 5 csxsu, ky 5 csysv, where c is a constant between
0.1 and 1 (Okubo and Ebbesmeyer 1976). With c 5 0.1 we
obtain the mean values kx 5 1.9 and ky 5 3.0 m2 s21.

Since these values are dependent on the choice of c, an
alternative estimate was obtained from the Lagrangian sta-
tistics of the residual motions. A stationarity test using the
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method of reverse arrangements (Bendat and Piersol 2000)
with 100 sampling intervals showed that residual velocities
were stationary at the 5% level of significance. Therefore,
assuming the statistical properties were also homogeneous,
the theory by Taylor (1921) (see also Pal et al. 1998) can
be applied, providing an estimate for the Lagrangian time
(Tx 5 2.4 h, Ty 5 4.1 h) and length scales (Lx 5 100 m, Ly

5 160 m). To account for the finite length of the trajectories,
the autocorrelation function was integrated only up to the
time of first zero crossing, effectively computing upper
bounds to the true Lagrangian scales (Colin de Verdiere
1983). To achieve statistical significance despite the small
number of trajectories, the segmentation method was used,
taking advantage of stationarity and homogeneity (Poulain
and Niiler 1989; Pal et al. 1998). Since the motion of a
drifter becomes uncorrelated after a time in the order of the
Lagrangian time scale, trajectories were restarted every 10
h, increasing the number of realizations from 4 to 28. Dif-
fusivities were then computed for each direction as k 5 L2/T,
yielding kx 5 1.2 and ky 5 1.8 m2 s21. These values are
40% smaller than those computed above, but substantially
confirm that the order of magnitude of our estimate is cor-
rect.

Unbounded horizontal shear dispersion—Unbounded hor-
izontal shear dispersion affects clouds whose extent has not
yet reached the horizontal bounds of the domain. The dis-
persion coefficient for a unidirectional shear flow along the
x direction is (Fischer et al. 1979)

Kx 5 1.5c2(]u/]y)2kyt2 (9)

An equivalent expression applies for the y direction, and the
formulation holds equally for a cluster of drifters, which by
definition diffuse laterally. Using c2 5 0.037 as for point
sources (Saffman 1962), kx 5 1.2 and ky 5 1.8 m2 s21 as
found earlier from Lagrangian statistics, and the mean shear
values (]u/]y, ]v/]x) 5 (22.4, 5.8) 3 1025 s21 from cluster
analysis, we found Kx 5 6.7, Ky 5 25.9, and Kxy 5 32.6 m2

s21 for the duration of experiment 5. These values are some-
what larger, but of the same order, as the overall observed
dispersion coefficients given above (see Fig. 6c).

As a confirmation of this, and to further exploit the de-
tailed knowledge of the time series of the horizontal shear,
we applied the approach proposed by Smith (1982). With a
linear shear ]u/]y of arbitrary time dependence, the exact
solution of the two-dimensional advection–diffusion equa-
tion yields (see also Sundermeyer and Ledwell 2001)

t

2 2s 5 2k G dt9 (10a)x y E
0

t1 ]u
G 5 (t9 2 t) (t9) dt9 (10b)Et 2 t̃ ]y0

where t̃ 5 /2ky and is the initial variance of the2 22s sx x0 0

cluster along x. An equivalent expression holds for the y
direction. Using the linear shear time series from cluster
analysis (subsampled at 6 min for computational efficiency),
we found mean values of Kx 5 15.8, Ky 5 45.7, Kxy 5 61.5
m2 s21 from Eqs. 10 for the duration of experiment 5. While

these values are larger than those estimated from Eq. 9, it
has to be considered that a linear shear yields an upper
bound to shear dispersion (Sundermeyer and Ledwell 2001).
We conclude that horizontal shear dispersion rates are of the
same order of the observed dispersion rates, suggesting hor-
izontal shear dispersion to be an important mechanism for
the growth of a cloud in the surface layer.

Discussion

The arguments presented shed new light on the processes
governing the growth of a cloud in the surface layer of strat-
ified lakes. Over short time scales, in the order of a day in
medium-sized lakes, internal waves provide the primary
mechanism by which divergence and convergence events
modify the horizontal area of a cloud. These events are char-
acterized by instantaneous growth rates that are an order of
magnitude larger than the mean dispersion coefficient, mak-
ing the growth of a cloud in the surface layer a very dynamic
process on short time scales, as already observed by Stevens
et al. (1995). Although they are reversible, implying they
cancel out in the mean, these events modify the thickness of
the surface layer, making it more (convergent events) or less
(divergent events) susceptible to wind mixing. These events
are also likely to influence phytoplankton dynamics signifi-
cantly, since by lifting (depressing) the thermocline period-
ically they expose phytoplankton to higher (lower) light
availability. The internal wave field modulates the vorticity
field, so as to satisfy conservation of potential vorticity. Di-
vergence events correspond to a loss of positive relative vor-
ticity, as observed also by Reed (1971) over a 6-h period in
the Alaskan stream. The rotation of the cluster then acts as
an antidivergent mechanism, and most of the growth of the
cloud occurs during periods of low vorticity (Fig. 8). Inci-
dentally, a similar result applies for two-dimensional turbu-
lence (Provenzale 1999). Over time scales larger than 2 d,
an order of magnitude analysis suggests that the potential
vorticity balance is affected by the wind stress curl. How-
ever, the uncertain estimate of the wind-forcing terms makes
it impossible to draw more precise conclusions.

Over intermediate time scales, of the order of a few in-
ternal wave periods, irreversible dispersion is well predicted
by an empirical formulation like Eq. 2, relating the disper-
sion coefficient of a cloud to its size. While Richardson’s
4/3 law is often invoked to justify the success of Eq. 2, its
use does not seem justified in a stratified, compact lake,
where there is no evidence of the wide range of eddies re-
quired for its validity. Instead, it is suggested that the dom-
inating mechanism in the surface layer is horizontal shear
dispersion, which is also associated with a 4/3 power law
formulation (Fischer et al. 1979). Horizontal shear dispersion
is important in the lake because of the large horizontal ve-
locity gradients, which exceed by almost one order of mag-
nitude those measured in the ocean (e.g., Molinari and Kir-
wan 1975; Sanderson 1995; Richez 1998). Since it is a
large-scale mechanism, dependent on the mean circulation,
it is readily apparent how a better understanding of the cir-
culation in stratified lakes is necessary to improve predic-
tions of dispersion rates. The present study showed that La-
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grangian drifter experiments and cluster analysis are well
suited to accomplish this.

A second, completely deterministic dispersion mechanism
that is possibly important but difficult to assess quantitative-
ly from the present data is pseudochaotic advection. Stocker
and Imberger (2003) showed that the superposition of inter-
nal waves and a steady circulation can lead to enhanced
dispersion in certain regions of the lake whose location is
determined by the topology of the steady flow field and in
particular by its hyperbolic points. The presence of a steady
geostrophic circulation consisting of two oppositely rotating
gyres is suggested by the linear inviscid solution to the uni-
formly forced problem (Stocker and Imberger 2003) and by
numerical investigations (Serruya et al. 1984; Herman 1989).
While the variability in the wind field and the effects of
bottom friction and topography (see Serruya et al. 1984; Her-
man 1989) do not warrant a detailed description of the tem-
poral and spatial variation of the enhanced dispersion re-
gions, the location of the hyperbolic points agrees with the
recirculation regions observed in the north and south of the
lake (Fig. 2a,d; see also Pan et al. 2002). For a tracer cloud
of initial size d0, a dispersion coefficient over time t can be
estimated as Kch 5 d le2lt (Stocker and Imberger 2003),2

0

where l is the finite time Lyapunov exponent. For typical
values of stratification and wind forcing, regions with l ø
0.05f can be expected to develop in the lake (Stocker and
Imberger 2003). Over a time of 2 d, a cloud having an initial
size of 1 km would have Kch 5 15 m2 s21, comparable to
the observed dispersion rate. While more detailed studies
would be required to verify this estimate, it is interesting to
note that pseudochaotic advection, like horizontal shear dis-
persion, is keyed to the large-scale circulation of the lake.

Turbulent dispersion can be shown to be negligible by a
simple scaling argument. For a cloud encompassing all
scales of turbulent motion in a wind-driven surface layer of
depth h1, the turbulent dispersion coefficient scales like h1u*
(Imberger and Monismith 1986), where h1 has been taken as
the horizontal scale of the largest eddies (as mentioned
above) and the wind shear velocity u* has been taken as
their velocity scale. This is in the order of 0.05 m2 s21, two
orders of magnitude lower than the observed dispersion co-
efficient, indicating that the eddies are too small to signifi-
cantly contribute to dispersion.

Vertical shear dispersion also appears to be negligible.
While drifters are not affected by vertical shear dispersion,
since they do not diffuse vertically, it is interesting to esti-
mate the importance of this mechanism for a cloud whose
vertical diffusivity is kz. Before being mixed over the depth
h1 of the surface layer in a time TV 5 0.4h k (Fischer et2 21

1 z

al. 1979), the apparent horizontal growth of the cloud is
affected by unbounded vertical shear dispersion. While no
precise calculation is warranted by the available data, an
order of magnitude analysis in which vertical shear was es-
timated from the differential motion of drifters at different
depths (see Table 1) indicated that unbounded vertical shear
dispersion was at least one order of magnitude smaller than
the observed mean value. On the other hand, bounded ver-
tical shear dispersion did not have the time to set in, as the
following argument shows. Data collected with a portable
flux profiler from 21 June to 3 July 2001 have been used to

compute kz. Averaging 1,394 measurements from the surface
layer (depths between 2 and 11 m) made on several days
from 1100 h to 2200 h yielded kz 5 1.1 3 1024 m2 s21,
which can be considered an upper bound since sampling
encompassed the periods of strongest wind. This results in
a lower bound for TV of 5.6 d, too long a time for the vertical
shear to remain steady. This suggests that for typical surface
layer conditions vertical shear dispersion can be dismissed
as negligible, in line with the experiments by Stevens et al.
(1995) in Kootenay Lake and by Sundermeyer and Ledwell
(2001) over the continental shelf. Stevens et al. (1995) con-
cluded that the missing dispersion rates were due to hori-
zontal shear, while Sundermeyer and Ledwell (2001) pointed
out the significant role of shearing and straining on horizon-
tal scales of 1 to 10 km. Both conclusions are in agreement
with our findings.
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