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Abstract
1.	 Drift or downstream dispersal is a fundamental process in the life cycle of many 

riverine organisms. In the face of rapidly declining freshwater biodiversity, there 
is a need to enhance our capacity to study the drift of riverine organisms, by 
overcoming the limitations of traditional labour-intensive sampling methods that 
result in data of low temporal and spatial resolution.

2.	 To address this need, we developed a new technology, the Riverine Organism 
Drift Imager (RODI), which combines in situ imaging with machine-learning classi-
fication. This technique expands on the traditional methodology by replacing the 
collection cup of a drift net with a camera system that continuously images river-
ine organisms as they drift through the device. After being imaged, organisms are 
released into the environment unharmed. A machine-learning classifier is used 
after field sampling to identify drifting organisms. Therefore, RODI provides a 
non-invasive sampling method that can quantify organism drift at unprecedented 
temporal resolution.

3.	 Multiple deployments have served to validate the performance of the technology 
in the field. In its current implementation, images are captured continuously for 
1.5 h at 50 frames per second. We demonstrate that the quality of the resulting 
images enables a convolutional neural network classifier to identify organisms to 
the family level. The weighted F1 score, a metric for the performance of the clas-
sifier, was 94%, based on training and testing on a field-collected dataset consist-
ing of 4598 images of 285 organisms belonging to seven classes (one species, five 
families and one order).

4.	 In conclusion, this work provides a proof of concept, demonstrating the viability 
of the deployment of RODI as an automated, in situ organism drift sampler. This 
novel approach offers the possibility to advance our fundamental understand-
ing of the drift of riverine organisms and how this is affected by human impacts 
in natural streams while, at the same time, can serve as a cost-effective tool for 
biodiversity monitoring.
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1  |  INTRODUC TION

In river ecosystems, drift or downstream dispersal is a funda-
mental part of the life cycle of many fish (Lechner et al.,  2016; 
Pavlov & Mikheev,  2017) and benthic invertebrates (Brittain & 
Eikeland, 1988). The drift of eggs or fish larvae provides the means 
to disperse from spawning or nursery habitats to suitable rearing 
habitats (Pavlov, 1994). Due to the specific environmental needs of 
fish larvae, early life-stage survival, and hence population recruit-
ment, is dependent upon drift (Humphries et al., 2020).

Benthic invertebrate drift is an essential trophic pathway in river 
ecosystems. The drift of benthic invertebrates can be a process of 
individual microhabitat selection to optimise resource acquisition or 
to avoid predation (Naman et al., 2016). At the same time, entering 
drift increases the risk of being predated by drift-feeding specialised 
guilds of fish (Grossman, 2014). Therefore, the biomass and species 
diversity of drifting benthic invertebrates can be considered indica-
tors of the productive capacity of streams and rivers to support fish 
populations (Naman et al., 2016).

Human activity, including the construction of barriers, pollution 
and artificial flow alterations, has significantly altered the environ-
mental conditions experienced by many riverine organisms, leading 
to drastic declines in freshwater invertebrate and fish populations 
over the last decades (Albert et al.,  2021; Deinet et al.,  2020). In 
Switzerland, for example, 65% of all fish species are threatened or 
have become regionally extinct, and so are 50% of benthic inverte-
brate species belonging to the orders of mayflies (Ephemeroptera), 
stoneflies (Plecoptera) and caddisflies (Trichoptera; FOEN, 2022). To 
improve freshwater biodiversity management and minimise the neg-
ative impacts of human activity, it is vital to enhance our capacity 
to monitor aquatic biota, particularly through non-invasive, broadly 
deployable methods that generate data with the appropriate tempo-
ral and taxonomic resolution. More specifically, long-term (months 
to years) and continuous (hourly to daily) data on species presence, 
abundance, and movement patterns. Such approaches have been 
increasingly applied in terrestrial (Zwerts et al.,  2021) and marine 
environments (Francescangeli et al.,  2023) with innovative imag-
ing systems, but are still scant in freshwater ecosystems (Struthers 
et al., 2015).

Riverine organism drift has, to date, been studied predominantly 
using drift nets (Brittain & Eikeland,  1988; Lechner et al.,  2016), 
most commonly in wadeable streams and rivers or from boats or 
bridges. Drift nets work by guiding organisms into a collection cup. 
Sampled organisms are collected from the cup at regular intervals, 
usually 15 min to 3 h, and preserved (i.e. killed) for post-processing 
(Elliott, 1970). This is an invasive, labour-intensive process, especially 
for long-term studies, further complicated by the fact that inverte-
brate and fish drift densities peak at night (Brittain & Eikeland, 1988; 

Elliott,  1970; Pavlov & Mikheev,  2017). Nets, moreover, integrate 
organisms over time and distances because it pools all individuals 
in the same sampling cup for a specific exposure time, resulting in 
low sample resolution (Lechner et al.,  2016), hindering our capac-
ity to temporally resolve (second or minute scale) drift patterns at 
the individual level (Naman et al., 2016). The post-processing step 
compounds this bottleneck as the taxonomic identification of the 
organism samples is very time-consuming and requires special-
ised expertise, a skill that has been declining globally (Hopkins & 
Freckleton, 2002). As a result, data on organism drift remains sparse, 
consisting only of limited measurement campaigns of low temporal 
resolution.

Recent advances in camera and machine-learning technolo-
gies have enabled novel image-based methods, which provide vast 
amounts of data and enable ecologists to study organisms cost-
effectively and non-invasively (Høye et al., 2021; Lürig et al., 2021). 
Machine-learning-based identification methods for benthic inverte-
brates are well established (Ärje et al., 2020; Høye et al., 2022; Lytle 
et al., 2010; Raitoharju et al., 2018). However, they rely on preserved 
organisms to allow detailed image generation in laboratory condi-
tions, and hence depend on labour-intensive, net-based sampling. In 
situ imaging has the potential to streamline this process, yet to date, 
systems developed to study riverine organisms have focussed on 
larger fish (Castañeda et al., 2020; Holter et al., 2020). A system that 
can image and identify smaller organisms (in the mm to cm range) in 
rivers has been lacking.

To overcome the limitations of traditional drift-net sampling, we 
are developing an underwater imaging system called the Riverine 
Organism Drift Imager (RODI). RODI provides a non-invasive, field-
going, flow-through sampling method that images drifting organisms 
and uses a machine-learning classifier to provide taxonomic identifi-
cation of imaged individuals. By continuously imaging over time, the 
number of drifting organisms belonging to each of a set of classes 
can thus be quantified with high temporal resolution and reduced 
effort. Here, we describe a proof of concept for RODI's technology, 
including the field deployments used for testing and the machine-
learning approach to classify imaged organisms.

2  |  MATERIAL S AND METHODS

2.1  |  Imaging system

Riverine Organism Drift Imager replaces the collection cup at the 
end of a traditional drift net with a camera system (Figure  1a; 
Figure  S1). A net (Figure  S2, mesh size 500 μm) funnels drifting 
organisms through a PVC tube (Figure S4) into a flow tube with a 
square cross-section of 50 × 50 mm (Figure 1b; Figure S3). Through 
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a polycarbonate window in the flow tube, a 1920 × 1200 pixel col-
our camera (Teledyne-FLIR BFS-U3-23S3C-C; Teledyne FLIR LLC), 
installed in a purpose-built camera housing, images the flowing 
water and any drifting organisms at 50 frames per second. This 
frame rate typically yields multiple images of each drifting organ-
ism (with the number of images determined by the flow velocity). 
Two continuously operating LED lights (CREE CXB1512, CreeLED 
Inc.; Cool white 6500K, 2033 lumen) inside the camera housing 
provide sufficient light to operate the camera with an exposure 
time of only 49 μs. This fast exposure time reduces movement 
blurriness for drift velocities up to 2 m s−1. The LED lights and cam-
era are attached to the aluminium lid of the camera box (Figure 1b; 
Figure S5), allowing heat to dissipate into the surrounding water. 
The camera is equipped with a 12 mm objective (Edmund Optics, 
12 mm UC Series fixed focal length lens, f/8 to f/11) and is in-
stalled at a working distance of 170 mm (Figure S5), resulting in a 
field of view of 100 mm × 61 mm and a depth of field of 35 mm. The 
camera housing is powered and operated by a weatherproof land 
station (Figure S1) that houses a laptop collecting images from the 
camera and a transformer (Meanwell LPC-35-1400, 24 V, 1400 mA 
output) for the LED lights. The land station is connected to the 
camera box through two cables—a USB 3.1 cable and a 2 × 1 mm2 
power cable, of length 15 m—combined within a flexible plastic 
protective sleeve. RODI operates from the regular power grid 
(230 V). The design plans, parts use, and construction process are 
described in Appendix S1.

2.2  |  Field deployments

Deployments were performed in March, April and May 2022 in the 
lower part of the Gadmerwasser stream (Switzerland), approximately 
200 m upstream of its confluence with the Aare River (Figure 1c–f). 
The Gadmerwasser has a managed minimum residual flow of 350 L s−1 
at the deployment site (Schweizer et al., 2012). The river substrate 
is predominantly a mix of gravel (2.5–25 mm in size) and cobbles 
(25–250 mm), with scattered larger boulders (>250 mm; Figure  1c). 
RODI was installed on the river substrate in a water depth of 20 cm 
by weighing it down with boulders. Upstream, two perforated metal 
fences (with 1.5 mm-diameter holes; Meyer et al.,  2019) directed 
drifting organisms towards the drift net (Figure 1a,c), which was at-
tached to the metal fences using water-resistant tape. The March 
deployments focused on general testing and hardware optimisation.

On 5 April 2022, freshly hatched (less than 1 day old) brown trout 
fry (Salmo trutta) were collected and released in the area between the 
metal fences, eventually drifting downstream through the system to 
be imaged. A night deployment from 10 May 2022, 21:00 until 11 
May 2022, 04:30 was performed to test the system's capacity to 
sample naturally drifting organisms. Finally, on 11 May from 10:00 to 
14:00, benthic invertebrates were systematically released into the 
drift net. For this trial, we collected local benthic invertebrates by 
dipping large river boulders in buckets containing river water to re-
lease attached invertebrates. Collected invertebrates were carefully 
divided on-site into classes of likeliness (i.e. similar body morphology, 

F I G U R E  1  Field deployment of the 
Riverine Organism Drift Imager (RODI). 
(a) RODI installed in the riverbed and 
kept in place with boulders. The black 
arrow indicates the flow direction. 
(b) RODI's camera housing. Drifting 
organisms are guided through the flow 
tube (white dashed outline), where a 
colour camera takes multiple images of 
each organism in rapid sequence through 
a polycarbonate window. High-intensity 
LED lights provide sufficient light to avoid 
motion blur. (c) RODI in place within the 
river bed behind the two metal fences. 
The area upstream was fenced off with 
red–white tape to protect brown trout 
spawning habitats and to prevent the 
induction of organism drift by human 
activity. (d–f) The deployment location in 
Switzerland (46°42′28.2″ N 8°13′33.3″ 
E). The Gadmerwasser stream (e) is an 
alpine tributary of the Aare River. RODI 
was installed 200 m upstream of the 
Gadmerwasser's confluence with the Aare 
(f).
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size and colouring). Sampled invertebrates were then released indi-
vidually within the drift net and captured upon exiting. Several ran-
dom organisms per likeliness class were preserved for taxonomic 
identification. Using a stereomicroscope (Nikon SMZ-U zoom 1:10) 
and taxonomic keys (Bauernfeind & Humpesch,  2001; Waringer 
& Graf,  2013; Zwick,  2004), these organisms were identified to 
the following taxonomical groups (order, family): Ephemeroptera, 
Heptageniidae and Baetidae; Plecoptera, Perlodidae and Capniidae; 
Trichoptera, Rhyacophilidae. We used data from the 5 April 2022 
and 11 May 2022 (daytime) experiments to generate an annotated 
image dataset to be used with the machine-learning classifier. Data 
from the natural drift experiment, 10 May 2022, were identified by 
a human and were not analysed using the machine-learning classifier 
(described in more detail below). Lastly, in agreement with the local 
wildlife authority (Fishereiinspektorat Kanon Bern), a permit was not 
required to run these experiment.

2.3  |  Data acquisition and processing

Data acquisition entails the capturing of images by RODI's camera, 
while during processing, bounding boxes of drifting organisms or 
objects are extracted from each image (Figure 2). Data acquisition 
and processing are performed using in-house developed command-
based programs compiled in C++ (Visual Studio 2015; Microsoft). 
The camera streams 8-bit images (BayerRG8 format) to the laptop 
on land, where they are saved as binary data in temporary backup 
files (.tmp), each file containing 1000 images (20 s at 50 fps, equat-
ing to 2.14 GB). The hard-drive capacity of the laptop defines the 
duration of each data acquisition interval, which for experiments to 
date was 1.5 h (578 GB). At the end of an acquisition interval, data 
are transferred to an external hard drive to enable a new acquisition 
interval.

During data processing, the bounding box of each drifting or-
ganism or object is determined, that is, a region is defined within 
the image that contains the organism or object of interest so that it 
(and not the whole image) can subsequently be used for classifica-
tion (Figure 2a). Bounding box extraction consists of several steps. 
The first temporary backup file (i.e. the first 1000 frames) from a 
given acquisition interval is converted into a video with a conven-
tional video format (.avi). Next, using Fiji (Schindelin et al., 2012), a 
median background frame is calculated using the first 20 frames of 
the video.

The extraction of bounding boxes uses several OpenCV func-
tions (Bradski, 2000), hereafter described as cv::function. For each 
frame in an acquisition interval, the absolute difference (cv::absdiff) 
with respect to the median background is calculated to remove sta-
tionary objects and minimise camera noise. Next, a Gaussian blur 
filter (cv::blur; 3 × 3 kernel size) is applied to reduce pixel noise. The 
resulting frame is binarised (cv::threshold), transforming all objects 
into white pixel regions, which are then saved as vectors of points 
(cv::findContours). The area of each object is calculated (cv::contou-
rArea), and an area threshold is applied (typically, 2 mm2) to remove 

noise and very small objects, such as individual sediment grains. The 
vector of points for each object that is retained is transformed into a 
polygon (cv::aproxPolyDP), around which an initial tight-fitting, rect-
angular bounding box (cv::boundingRect) is generated.

The coordinates and size of this tight-fitting, rectangular bound-
ing box are used to define a loose-fitting, square bounding box, with 
each side equal to 1.5 times the longest side of the tight-fitting, 
rectangular bounding box. Finally, the square bounding boxes are 
extracted from the original raw image and saved as individual TIF 
files. Each drifting organism or object is imaged multiple times (typ-
ically, 10–15 times in the experiments described here) upon drifting 
through RODI, generating an equal number of bounding boxes. The 
ensemble of all bounding boxes belonging to an individual organism 
or object will be referred to as a ‘drift event’ hereafter (Figure 2b). 
Bounding boxes are sorted (currently this occurs manually) to re-
tain drift events of interest, here drifting organisms, and discard 
other drift events (e.g. debris or air bubbles). Each drift event of in-
terest is then given a unique identifier. Finally, all bounding boxes 
are converted to PNG format with a resolution of 250 × 250 pixels 
(Figures 2c and 3) in order to be used in the machine-learning classi-
fier. The code to acquire images in the field and generate bounding 
boxes during processing can be found in Appendix S1.6.

2.4  |  Machine-learning classifier

The bounding boxes extracted from in situ acquired images (Figure 3) 
form the input of a machine-learning classifier. For the classifica-
tion process, an annotated dataset was obtained from the images 
recorded in the experiments on 5 April 2022 (brown trout) and 11 
May 2022 (daytime benthic invertebrates releases). After complet-
ing the bounding box extraction, drift events containing organisms 
from these experiments were sorted into the following classes: 
Heptageniidae, Baetidae, Perlodidae, Capniidae, Rhyacophilidae 
and Salmo trutta. Annotation was performed using Label Studio 
(Tkachenko et al.,  2020). Additionally, several bounding boxes re-
vealed the presence of true fly (Diptera) larvae. Although Diptera 
larvae were not preserved for taxonomic classification, we included 
this class in the machine-learning classification, with their identity 
determined based on visual inspection of the images themselves. 
The overall dataset contained 4598 bounding boxes from 285 in-
duced drift events distributed among the seven classes (Figure 4a; 
Figure  S9). The machine-learning classification was performed in 
Python 3.9 (Python Software Foundation, https://www.python.
org/) using PyTorch (Paszke et al.,  2019) and Scikit-learn libraries 
(Pedregosa et al., 2011).

The Res-Net18 architecture (He et al.,  2016), a deep con-
volutional neural network with 18 deep layers, was used for 
classification. Non-overlapping cross-validation datasets were 
created, each containing training (~55%), test (~25%) and vali-
dation (~20%) drift events. The unique identifier for each drift 
event was used as a grouping variable, ensuring that each drift 
event occurred only once in a test set across all cross-validation 
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datasets. Since the image dataset was unevenly distributed 
among the seven classes, we generated only four unique cross-
validation sets to ensure that all seven classes were present 
in the training, test and validation sets. A Res-Net18 network 
was trained (AdamW optimiser, learning rate finder and early-
stopping activated) for each cross-validation set using its train-
ing and validation drift events. This resulted in an array of model 
weights that were subsequently used to perform classification 
on the test set drift events for that cross-validation dataset. 
Since each drift event generated multiple bounding boxes, prob-
abilistic image augmentation techniques were applied to the drift 
events used for training to prevent model overfitting (Shorten & 
Khoshgoftaar,  2019). The classification of test set drift events 
was repeated for each cross-validation dataset, using the re-
spective model weights for each dataset. Classification results 
were aggregated as each test set was unique and represented 
~25% of the complete image dataset. Finally, since each drift 
event was classified a number of times equal to the number of 

bounding boxes in that drift event, the label predicted most fre-
quently was taken as the final label.

Classic machine-learning performance metrics, including precision, 
recall and the F1 score (Manning et al., 2008; Chapter 8.3), were cal-
culated for each class. Precision is the fraction of true positive classi-
fications among all positive classifications (true and false) for a given 
class. Recall is the fraction of true positive classifications among all 
classifications (positive and negative) for a given class. The F1 score of 
a given class is the harmonic mean of precision and recall for that class. 
From these scores, we computed a weighted precision, a weighted re-
call and a weighted F1 score as overall performance metrics suitable 
for datasets with unbalanced class distributions. Each weighted metric 
is calculated as the sum of that metric over all classes, where the sum 
is weighted for each class by the support for that class, that is the pro-
portion of all drift events belonging to that class (Table S1: Proportion 
of drift events). A confusion matrix was generated to provide insights 
into the types of misclassification. The code for the machine-learning 
classifier can be found in Appendix S1.7.

F I G U R E  2  Overview of the Riverine 
Organism Drift Imager (RODI) data 
acquisition and bounding box extraction. 
(a) The camera's field of view shows one 
image of an organism as acquired by 
RODI. A bounding box is generated for 
any object or organism within each frame. 
(b) The sequence of all images acquired 
for a given organism (shown overlaid on 
the size of the camera's field of view) 
is referred to as a ‘drift event’. (c) All 
bounding boxes for each drift event are 
rescaled to 250 × 250 pixels for use in the 
machine-learning classifier.
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To ensure that the applied machine-learning classifier was 
the suitable approach to our dataset, we performed a principal 
component analysis (PCA; Jolliffe,  2002) followed by a density-
based spatial clustering of applications (DBSCAN; Schubert 
et al., 2017) on the annotated image dataset (Appendix S1.8: PCA 
and unsupervised clustering). These techniques were not able to 
correctly differentiate between the organism classes and instead 
grouped images according to their raw-pixel value similarities 
(Figures S7–S9).

2.5  |  Natural organism drift at night

Natural drift was measured from 21:00 to 04:10 during the night of 
10–11 May 2022 during four measuring intervals, each 1.5 h long. 
During short time periods between measuring intervals (20–30 min), 
data were transferred from the laptop to an external hard drive, and 
the system (drift net and metal fences) was cleaned of debris.

In the images from this experiment, the bounding boxes resulting 
from image processing were sorted manually, discarding drift events 

F I G U R E  3  Example of bounding boxes (resized to 250 × 250 pixels) for each of the seven classes used in the machine-learning 
classification presented in this work. Each bounding box represents one image from one drift event (i.e. each bounding box is a unique 
organism), and an individual scale bar was added for illustration. The length of the scale bar is fixed on a per-class basis and is thus an 
approximation that does not account for the water-magnification effect.
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containing debris or bubbles. The remaining drift events were identi-
fied by eye into six classes: Ephemeroptera, Plecoptera, Trichoptera, 
Diptera, Exuviae (discarded exoskeletons after moulting) and non-
Benthic-Invertebrates. A unique identifier was assigned to each drift 
event, along with a time stamp. In these samples, organisms returned 

directly to the river environment and were not preserved for labo-
ratory identification. Therefore, taxonomic identification was per-
formed by a human using the bounding boxes, resulting in a lower 
resolution. During this process, we detected several drifting organ-
isms with different morphologies within the orders Ephemeroptera 
and Plecoptera that were not present in the annotated dataset used 
for the machine-learning classifier. As a result, we did not use data 
from the natural organism drift measurements for the validation of 
the machine-learning classifier.

3  |  RESULTS

3.1  |  Device operation

During all deployments, RODI was able to produce continuous sets 
of images during each acquisition interval without hardware or soft-
ware issues, and the camera housing remained waterproof even 
during submersion times of up to 20 h. Drift events were recorded 
equally well during day and night under the flow conditions tested, 
validating the choice of lighting, camera settings and flow-through 
dynamics.

Other objects beyond organisms were recorded. Most of the 
bounding boxes recorded during the natural drift experiment con-
tained debris or bubbles (80%–90%; Figure S10). Debris also clogged 
the metal fences and drift net, both of which had to be cleaned at 
the end of each acquisition interval. The high frequency of bubbles 
and debris was caused by the drift net (40 × 25 cm) projecting above 
the water surface (water depth, 20 cm) at the deployment site, re-
sulting in the entrainment of air bubbles and debris into the flow 
tube (Figure 1a,c).

3.2  |  Machine-learning classification

The weighted precision, weighted recall and weighted F1 score for 
the dataset collected on 5 April 2022 and 11 May 2022 (images 
from both days were aggregated into a single dataset) all had the 
value of 94% (Figure 4a; Table S1). When considering the classifier's 
per-class performance (Figure 4a; Table S1), precision, recall and F1 
score values ranged between 87% and 100% for all but one class, the 
Perlodidae. The full details of the inter-class classification perfor-
mance can be found in the confusion matrix (Figure 4b).

3.3  |  Natural organism drift

In total, 674 drifting benthic invertebrates, 254 exuviae and 39 non-
benthic invertebrates were imaged during the 6 h overnight sampling 
period from 10 to 11 May. The number of drift events increased as a 
function of time during the night (grouped in bins of 5 min, Figure 5a 
and 15 min, Figure 5b). The rate of capture of debris varied during 
the sampling period, with large amounts of debris that severely 

F I G U R E  4  Performance of the machine-learning classifier. 
(a) Classification report, showing, for each of the seven classes 
on the x-axis, the number of drift events (blue bars; total = 285) 
and the classification performance (yellow dots = F1 score; 
brown triangle = precision; orange squares = recall), as well as 
the performance for the model overall (dashed line = weighted 
precision, weighted recall and weighted F1 score all equal to 94%). 
(b) Confusion matrix for the machine-learning classifier, each cell 
representing a count of classification events. The y-axis represents 
the true labels, while the x-axis represents the labels predicted by 
the classifier. A colour gradient represents the value range, from 
yellow for one to deep red for seventy-nine.
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polluted images during the third interval (00:50–01:20). This event 
severely complicated the bounding box analysis, leading to data loss 
(Figure S10).

Several patterns could be identified in the distribution of drift 
events during the night. The total number of drifting invertebrates 
increased over time, notably the number of Ephemeroptera and 
Plecoptera. In contrast, the number of drifting Diptera decreased 
over time. The number of drifting exuviae remained relatively con-
stant, while the number of non-benthic invertebrate drift events de-
creased. Only one Trichoptera drift event was observed.

4  |  DISCUSSION

In this work, we described the technology and first deployments of 
RODI, an underwater camera system to image drifting organisms, 
providing a proof of concept for this novel approach. Images of 

drifting organisms generated by RODI were of sufficient quality for 
organisms to be identified to the family level (for benthic inverte-
brates) using a machine-learning classifier (Figure 4) or to the order 
level (for all organisms) by a human expert (Figure 5). Here we will 
discuss the results of the machine-learning classifier and natural or-
ganism drift experiments in more detail, highlight current limitations 
and planned developments to the system, and explore potential sci-
entific and monitoring applications.

4.1  |  Machine-learning classifier

The initial application of a machine-learning classifier to identify 
in situ imaged drifting organisms to the family level had an overall 
weighted F1 score of 94% (Figure 4a). This result was achieved de-
spite the fact that the classifier had to deal with unevenly distributed 
drift events between classes, from as few as 11 events (Perlodidae) 

F I G U R E  5  Histograms of drifting organisms and exuviae recorded during the night-time deployment. Drifting organisms and exuviae 
were identified by eye to the order level from images. (a, b) Number of drift events within 5 min (a) and 15 min (b) intervals. Data acquisition 
intervals lasted 1.5 h, and between intervals, data was transferred (20–30 min) to an external hard drive.
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to as many as 87 events (Baetidae). The unbalancedness and size of 
the dataset is a result of the community structure at the sampling 
site. Perlodidae was the only class with a lower performance (preci-
sion, recall and F1 score all equal to 73%), which was most likely due 
to the limited number of organisms (11) sampled for this class.

Out of 285 drift events, 17 were wrongly classified within 
the classes of Baetidae, Capniidae, Diptera, Heptageniidae and 
Perlolidae (Figure  4b). Morphological similarities between these 
classes and a low number of Perlolidae replicates were the major 
causes for classification errors (Ärje et al.,  2020). Morphologically 
very distinct classes—Rhyacophilidae and Salmo trutta—were per-
fectly classified.

While the involved taxa are not the same and, thus, the results 
are not directly comparable, the machine-learning performance pre-
sented here is similar to that achieved for preserved benthic inverte-
brates (Raitoharju et al., 2018) and insects (Bjerge et al., 2021, 2022). 
Albeit, RODI, in this early implementation, was applied to a lower 
taxonomic resolution (i.e. family level).

4.2  |  Natural organism drift

Although we experienced some issues such as clogging, which are 
discussed below, capturing natural organism drift at night with this 
novel approach was straightforward and resulted in data of high 
temporal resolution. The drift of Ephemeroptera and Plecoptera in-
creased with time, peaking at 04:00 during the night. The drift of 
these taxa is known to take place predominantly at night as a mecha-
nism to avoid predation during dispersal (Brittain & Eikeland, 1988). 
The drift of Diptera decreased over time during the night, which 
corresponds with observations that certain Dipteran families, such 
as Simulidae, peak at dusk (Adler et al., 1983; Tilley, 1989). Finally, 
non-benthic invertebrate drift decreased over time, most likely due 
to a decreased activity of day-active invertebrates (Waters, 1965). 
Overall, these results provide a glimpse of the data that could be 
captured using RODI and underline the potential for studying organ-
ism drift with higher temporal resolution.

4.3  |  Current limitations and planned 
developments

In this work, RODI captured organism drift in acquisition intervals of 
1.5 h, determined by the hard-drive capacity of the laptop. This limi-
tation did not prevent longer deployments, only resulting in short 
interruptions between acquisition intervals, yet required human 
intervention over the entire period of deployment. This bottleneck 
can be removed by using a higher-capacity computer or, more ef-
fectively, by implementing the bounding box analysis in real-time, 
thereby only saving bounding boxes and not full images. As a result, 
we expect to reduce the data volume by a factor of around 200, thus 
enabling continuous sampling of organism drift for nearly 2 weeks 
using the same hard drive capacity (1 Tb) tested here. Going further, 

bounding boxes could be continuously uploaded to a server (if an 
internet connection were integrated), thereby removing this limita-
tion entirely. In this case, the classifier could automatically identify 
organisms. This relatively simple improvement would allow RODI to 
generate real-time data and, ultimately, even to adapt the acquisition 
campaign based on the generated data.

The smallest object, that is, debris, detected by the bounding box 
analysis measured approximately 1.5 mm in size, an estimation that 
does not account for the water magnification effect. A lower area 
threshold during the bounding box analysis would solve this issue at 
the cost of many more bounding boxes of debris. Alternatively, the 
image resolution can be increased by changing the optical train, with 
the trade-off of generating larger images and thus a greater com-
putational burden. That said, we do not expect many benthic inver-
tebrates and small-bodied fish that do engage in drift to be smaller 
than 1.5 mm in size (Dodrill et al., 2016; Sandlund, 1982).

A second factor that limited deployment time was clogging of the 
drift net and metal fences. The fact that RODI was installed down-
stream of the two metal fences exacerbated the problem of clogging 
since the fences funnelled debris into the drift net and camera hous-
ing. The metal fences were installed to maximise the chances of im-
ages drifting organisms, and will be omitted in future deployments. 
Clogging of the system also likely changed the upstream hydraulic 
conditions over time. While the many debris objects (and air bub-
bles) increased the time needed to curate the data, they did not ham-
per the acquisition of reliable images of organisms for the majority 
of the deployments. Engineering solutions to prevent clogging are 
being devised and will include a combination of an upstream filter 
grid and the replacement of the drift net with a funnel system that 
should guide debris through the device, instead of getting stuck in 
the net. This improvement will reduce the need for regular checks 
during deployments and entrain less debris in the imaging pathway, 
reducing the number of bounding boxes, hence increasing deploy-
ment times.

Although the initial machine-learning results are promising, 
we expect that system optimisations will produce higher-quality 
images, which—together with the collection of larger amounts of 
training data—will bring genus or even species-level identification 
within reach. Yet, classification to the family level may be sufficient 
for many applications. For example, monitoring programs using ben-
thic invertebrates as bio-indicators commonly use family-level tax-
onomical identification (Cortes et al., 2013). A priority development 
to improve the machine-learning classifier's performance would be 
the inclusion of organism size as a training parameter. This improve-
ment will help with the distinction of very similar-looking taxa that 
vary significantly in body size (e.g. Perlolidae and Capniidae). Further 
improvements of the classifier will be the inclusion of debris, exu-
viae and air bubbles in the classification scheme to achieve complete 
automation.

Currently, the data from RODI represents absolute numbers of 
drifting organisms sampled over a given time interval (Figure S1). For 
a comparison of organism drift among different conditions and lo-
cations, drift densities (individuals m−3) or rates (individuals m−3 s−1) 
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have to be estimated (Elliott, 1970). By installing a flow sensor into 
the system, we can measure the volume of water sampled by the 
camera, which is determined by the net or funnel area and the flow 
discharge. Adding additional sensors for temperature, light intensity 
and turbidity could also be valuable, depending on the application.

Tests in varying turbidity conditions have not been performed. 
Therefore, it is currently unknown under what levels of turbidity the 
image quality and classification performance would start to deteri-
orate substantially. We acknowledge that if the turbidity exceeds a 
certain threshold, the machine-learning classifier will most likely not 
be able to recognise drifting organisms in its current implementation. 
However, RODI images only 5 cm of water with a highly contrast-
ing white background, which should reduce the effect of turbidity 
during image acquisition. Moreover, with a combination of increased 
training data on both organisms and debris of different origins, and 
data augmentation techniques mimicking turbidity conditions, ma-
chine learning is expected to be effective even with substantially 
cluttered images (Noh et al., 2019; Shorten & Khoshgoftaar, 2019). 
Future experiments will be performed to systematically vary the 
level of turbidity and assess the degradation in imaging and classi-
fication performance.

A further unknown scenario for the application of RODI is the 
case of very high flow velocity conditions. These can occur during 
floods, resulting from heavy rain or hydropeaking, the release of 
water from reservoirs used for hydropower to increase electricity 
production at peak demand (Bratrich et al., 2004). Very high veloc-
ity conditions will pose a double challenge: first, on the operational 
reliability of RODI's structure (its anchoring, shielding from large de-
bris, maintenance of a stable drift net and level of streamlining of 
its shape); second, on the quality of the images, as velocities much 
higher than 2 m s−1 could result in image blur. Deployments in high-
flow discharge regimes will allow us to explore the limits at which 
the system can operate and engineer improvements for reliable op-
eration and imaging.

Finally, current deployments have been performed using the 
power grid. We plan to design a standalone power supply based on 
a combination of renewable energy, such as solar or small water tur-
bine, and battery storage. This improvement will allow RODI to be 
deployed in remote locations.

4.4  |  Potential applications of RODI in 
science and monitoring

Despite numerous studies on benthic invertebrate drift (Brittain & 
Eikeland, 1988; Naman et al., 2016), data on drifting invertebrates 
remains limited in temporal resolution and scale. The ability to 
generate data at a high temporal resolution over long deployment 
times, with only modest labour, has the potential to fill this gap. 
This also applies to the study of fish larval drift, a crucial process 
in their life cycle to disperse from nursery to rearing habitats. For 
example, although many studies have investigated fish larval drift 
(Lechner et al., 2014, 2018), little is known about the navigation and 

motion capacity of larvae during drift (e.g. their ability to orientate 
and to use active–passive drift mode; Lechner et al., 2016; Pavlov 
& Mikheev, 2017). The images produced by RODI could help shed 
light on this and similar questions by providing information on the 
orientation of drifting fish larvae. For example, larvae drifting with 
a downstream orientation and a drift velocity exceeding the local 
current would indicate active rather than passive drift (Lechner 
et al., 2016). An additional area of application is the study of how 
drifting organisms cope with the fast-changing conditions associated 
with hydropeaking events. Hydropeaking is known to induce the 
drift of riverine organisms (Schülting et al., 2019; Tonolla et al., 2022) 
and can cause fish mortality due to stranding events when the flow 
recedes (Schmutz et al., 2015).

Besides the generation of fundamental knowledge on the drift of 
riverine organisms, RODI holds great potential as a monitoring tool. 
Many countries currently incentivise hydropower mitigation mea-
sures or river restoration projects to reverse the decline in fresh-
water biodiversity. It is beneficial to precede and follow up these 
initiatives with long-term impact analyses, including monitoring of 
aquatic organisms. Tools such as RODI make this monitoring more 
achievable: one such device can monitor a given location for ex-
tended periods of time, while multiple devices can provide spatial 
resolution; their operation is non-invasive for the organisms being 
monitored; and the overall effort is substantially reduced in compar-
ison with traditional, drift net-based sampling, rendering monitoring 
more cost-effective.

5  |  CONCLUDING REMARKS

This work demonstrated the viability of RODI, an in situ imaging-
based system, to quantify riverine organism drift through the use 
of a machine-learning classifier to taxonomically identify drifting or-
ganisms from images. The machine-learning classifier showed good 
performance when applied to the drifting community of a river in 
Switzerland. Future deployments will enrich the dataset available 
for training, testing and validation, expanding the range of organ-
isms that can be classified and further improving the performance of 
the machine-learning classifier. Based on this foundation, improve-
ments in automation, hardware and device operation are close at 
hand. With their implementation, RODI will be ready for expanded 
use in both scientific studies and biodiversity monitoring, ultimately 
contributing to effective river and stream management strategies.
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Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
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