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The settling velocity of porous particles in linear stratification is affected by the diffusive
exchange between interstitial and ambient water. The extent to which buoyancy and
interstitial mass adaptation alters the settling velocity depends on the ratio of the
diffusive and viscous time scales. We conducted schlieren experiments and lattice
Boltzmann simulations for highly porous (95 %) but impermeable spheres settling in
linear stratification. For a parameter range that resembles marine porous particles, ‘marine
aggregates’, i.e. low Reynolds numbers (0.05 ≤ Re ≤ 10), intermediate Froude numbers
(0.1 ≤ Fr ≤ 100) and Schmidt number of salt (Sc = 700), we observe delayed mass
adaptation of the interstitial fluid due to lower-density fluid being dragged by a particle
that forms a density boundary layer around the particle. The boundary layer buffers the
diffusive exchange of stratifying agent with the ambient fluid, leading to an enhanced
density contrast of the interstitial pore fluid. Stratification-related drag enhancement by
means of additional buoyancy of dragging lighter fluid and buoyancy-induced vorticity
resembles earlier findings for solid spheres. However, the exchange between density
boundary layer and pore fluid substantially increases stratification drag for small Fr.
To estimate the effect of stratification on marine aggregates settling in the ocean, we
derived scaling laws and show that small particles (≤0.5 mm) experience enhanced
drag which increases retention times by 10 % while larger porous particle (>0.5 mm)
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settling is dominated by delayed mass adaptation that diminishes settling velocity
by 10 % up to almost 100 %. The derived relationships facilitate the integration of
stratification-dependent settling velocities into biogeochemical models.

Key words: porous media, ocean processes, stratified flows

1. Introduction

Settling of porous particles in stratified fluids is a ubiquitous process in many
environments, for example in the ocean (Asper et al. 1992; Li, Yuan & Wang 2003). Porous
marine particles, ‘marine aggregates’, play a fundamental role in oceanic biogeochemical
cycles as they withdraw nutrients and especially carbon from surface waters into deeper
regions of the ocean. The sinking of marine aggregates and their remineralisation during
their descent eventually determine how efficiently the biological carbon pump transfers
photosynthetically fixed carbon to depth. The accurate representation of the biological
carbon pump in Earth system models is thus a key challenge to improve projections
of global biogeochemical cycles and, in particular, the oceanic carbon sink (Ilyina &
Friedlingstein 2016; Maerz et al. 2020). Since ocean stratification is projected to intensify
under ongoing climate change (Bopp et al. 2013), insights into effects of stratification on
settling dynamics of marine aggregates are required to enable quantifying its potential
effect on the future biological carbon pump.

In situ observation of marine aggregates settling at low to moderate Reynolds numbers
O(0.01) ≤ Re ≤ O(10) showed increased retention times in stratification (Asper 1985;
Alldredge & Gotschalk 1988; Riebesell 1992; Alldredge & Crocker 1995; MacIntyre,
Alldredge & Gotschalk 1995; Alldredge et al. 2002). We here define the Reynolds number
as Re = aW/ν for sphere radius a, stationary sinking velocity W and kinematic molecular
viscosity ν. Stratification, expressed in terms of the Brunt–Väisälä frequency, N, typically
ranges from N = O(0.001 s−1)–O(0.1 s−1) under oceanic conditions up to N � O(1 s−1)
in estuaries and fjords (Boehrer & Schultze 2008; Geyer, Scully & Ralston 2008). The
Brunt–Väisälä frequency is defined as N = √−(g/ρ0)γ , where g is the gravitational
acceleration, ρ0 a reference density and γ = ∂ρ/∂z is the vertical density gradient of
the ambient water. Studies of in situ marine aggregates suggested cessation of settling
due to reaching neutral buoyancy (e.g. Riebesell 1992; Alldredge & Crocker 1995), or
the buoyancy of the interstitial fluid carried by the porous particles to cause increased
retention during settling in stratification (Kindler, Khalili & Stocker 2010). Such retention
is particularly associated with pycnocline layers, which are defined through strong vertical
density gradients (MacIntyre et al. 1995; Alldredge et al. 2002).

Settling of porous particles across sharp pycnocline layers has thus far been studied
in models and experiments to understand the underlying fluid dynamics (Kindler et al.
2010; Camassa et al. 2013; Prairie et al. 2013, 2015; Panah, Blanchette & Khatri 2017).
These sharp pycnocline layers extend over a thickness of order of magnitude similar
to the particle radius and separate an upper, lighter fluid phase from a lower, denser
one. For the settling dynamics across these sharp pycnocline layers, a number of cases
can be distinguished depending on the density difference ratio ξ = δρ/�ρ0 (comparing
the density increment over the pycnocline layer, δρ, with a particle’s excess density in
the lighter phase, �ρ0) and the particle permeability to flow k (Kindler et al. 2010;
Camassa et al. 2013; Prairie et al. 2013, 2015; Panah et al. 2017; Prairie et al. 2019).
In the case of impermeability to flow (which is a fair approximation for most marine
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Porous particles settling in stratification
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Figure 1. Conceptual representation of stationary, stratified flow around a porous and impermeable sphere of
radius a and density ρp. At constant velocity W, the impact of isopycnal deflection on the drag exerted on
the sphere is modelled as a density boundary layer of thickness δ and density ρδ . The red dot indicates the
stagnation point.

aggregates; Moradi et al. 2018) the external flow and density fields can be expected to
be largely similar to those of solid particles. Solid spheres settling in linear stratification
at low Reynolds number (Re ≤ 1) and large Schmidt number (Sc = ν/D, representative of
salt as a stratifying agent) entrain lighter fluid by distorting isopycnals at the sphere surface
which leads to the formation of a density boundary layer around a particle and a buoyant
wake (figure 1; e.g. Srdić-Mitrović, Mohamed & Fernando 1999; Higginson, Dalziel &
Linden 2003; Yick et al. 2009; Zhang, Mercier & Magnaudet 2019). Stratification effects
also cause extra stresses at the sphere’s surface by the formation of toroidal vortices due to
baroclinic torque (List 1971; Ardekani & Stocker 2010; Zhang et al. 2019) which has been
shown to be the dominant contribution to drag enhancement at low to intermediate Re
(Zhang et al. 2019). The interplay of vorticity generation and the buoyancy by lighter fluid
dragged by the particles leads to distinct stratification, i.e. settling regimes separated by the
relative length scales of stratification, viscosity and diffusivity, in which drag enhancement
can be described by scaling laws based on Re, Sc and the Froude number, Fr = W/(aN)
(Zhang et al. 2019).

In addition to these external effects commonly referred to as stratification drag
enhancement, the excess density of porous particles changes when settling in stratification
via an adjustment of interstitial and ambient fluid through the exchange of stratifying
agent. This mass adjustment effect is most pronounced when particles are impermeable
to flow, i.e. the exchange of interstitial pore water and ambient fluid is governed only
by diffusion. If the particle excess density is large compared to that of the lower fluid
phase, ξ < 1, the influence of the interstitial fluid mass adaptation is negligible and only
slight retention is observed due to viscous entrainment of fluid of lower density into the
denser phase forming a buoyant wake which decelerates the particle descent below a
sharp pycnocline (Srdić-Mitrović et al. 1999; Camassa et al. 2010). At moderate Reynolds
numbers (5 < Re < 15), the wake pinches off rapidly and retreats upwards, while in the
Stokes regime (Re � 1), the stem of entrained fluid dissolves due to diffusion and, hence,
retardation increases (Camassa et al. 2010). If, however, a particle is impermeable to flow
and the density increment exceeds the excess density of the particle, hence ξ > 1, settling
itself becomes diffusion-limited (Li et al. 2003; Kindler et al. 2010; Panah et al. 2017), i.e.
particles settle in response to the diffusive mass adaptation of the interstitial fluid.

931 A9-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

91
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.913


S. Ahmerkamp and others

As stratification in the ocean typically extends over several to tens of metres
(Li et al. 2020), which is much larger than typical sizes of marine aggregates
(O(1 μm) ≤ a ≤ O(1 cm)), viscous and diffusive effects on settling velocities of marine
aggregates may not be as separable as suggested by models for sharp pycnocline layers.
On the contrary, it is reasonable to assume that in extended, linear gradients a porous
sphere reaches a stationary state (W = const.) in which both drag enhancement and
delayed interstitial mass adaptation contribute to reducing settling velocities as compared
to settling in unstratified fluids. As an additional effect, the density boundary layer can be
expected to modulate the interstitial mass adaptation with the ambient fluid.

Understanding the consequences of stratification-dependent sinking of marine
aggregates for biogeochemical cycles is highly desirable, but thus far has been impeded
by limitations inherent to in situ observations and large uncertainties of key parameters
such as aggregate excess density, which demands model-based investigations. Ocean
biogeochemical cycles are, however, typically studied in regional or Earth system models
which are limited by computational performance and thus require parameterisation of
subgrid-resolution processes (e.g. the Max Planck Institute’s Earth system model 1.2-LR
features a nominal horizontal resolution of 150 km and a minimum vertical layer thickness
of 10 m; Mauritsen et al. 2019). A parameterisation of net effects of stratification on
marine aggregate sinking is thus essential to enable Earth system models to investigate
this effect on future biogeochemical cycles and carbon fluxes under ongoing climate
change. Therefore, we here focus on highly porous, impermeable particles settling in linear
stratification and aim at (i) detailed insights into the involved forces and (ii) providing
approximate parameterisations that enable one to represent and study linear stratification
effects on settling of marine aggregates in large-scale, spatially explicit regional to global
ocean biogeochemistry models.

To determine the relationship between stratification drag enhancement and mass
adaptation, we examined the settling dynamics of porous (ε = 0.95, ratio of void to
total volume) and impermeable spheres (here defined as k � 10−12 m; see also figure 14)
in linear stratification for low Reynolds numbers and a wide range of Froude numbers
as commonly found in marine environments. Steady-state lattice Boltzmann simulations
and schlieren experiments were performed in which we focused on buoyancy effects
of the interstitial and boundary layer fluid, as well as the impact of diffusive exchange
between interstitial, boundary layer and ambient fluid. To simplify the quantification of
increased retention of particles settling in stratification, we derive scaling laws and present
their application to several test cases. This article is structured as follows. In § 2 the
experiment method, basic equations and the simulation method are described along with
some validation results. Subsequently, in § 3 flow and density fields of porous particles
are characterised and referenced to solid-sphere behaviour with particular emphasis on the
density boundary layer and the interstitial fluid properties as well as their impact on settling
velocities. Scaling laws for both stratification drag enhancement and particle buoyancy are
derived. Finally, in § 4 scaling analysis is applied to illustrate and discuss the retention of
porous and solid particles in linear stratification under oceanic conditions.

2. Methods

2.1. Settling velocity measurements and schlieren visualisation
In order to simultaneously determine settling velocity and visualise the density
perturbations of a porous particle settling through a linear stratified fluid, we conducted
schlieren experiments in a settling chamber. The settling chamber had a square base
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Figure 2. Experimental method for simultaneous measurement of settling velocity and schlieren
visualisation.

of dc = 22.4 cm with height hc = 38 cm (figure 2). The tank was filled to a depth of
37 cm using a double bucket system to generate a linear stratification based on two fluids
(Oster 1965). The fluids in the buckets were aqueous glycerol mixtures with contents
that ranged from 60 to 90 wt% glycerol. The glycerol content as well as stratification
strengths were varied to adjust Reynolds and Froude numbers of the particles. The mean
densities throughout all experiments varied between 1150 and 1227 kg m−3. Note that,
within one experiment, density changes were typically below 1 %. To avoid evaporation,
the fluid surface was covered with shading balls. Experiments were performed in an
isolated basement room where temperature variations did not exceed �T = ±0.5 ◦C.

Highly porous, but impermeable particles were produced using fibres as described in
Dörgens et al. (2015). Briefly, in a semi-manual process, polyester fibres with 20 μm
diameter were agglomerated to nearly perfect spheres. The porosities of 10 replicates were
in the range ε = 92 % to 94 % with mean radius a = 0.68 cm. Particles were released into
the flow tank using a cone with a prolonged inlet to avoid lateral movements and rotations.
The settling was imaged using a pco1600 camera (PCO) fitted with an AF-S Nikkor zoom
lens ( f = 16 to 88 mm, f number = 3.522) positioned 20 cm in front of the tank. The rear
surface of the tank was coloured black. The field of view was 20 cm × 5 cm, at a resolution
of 27 μm px−1. A sequence of 7 to 35 images was recorded at 2 Hz and processed
using Simulink Matlab (2011b). Prior to analysis, a reference image (Ĩref ) was subtracted
from each image including the aggregate (I) and used to normalise: Ĩ = (I − Iref )/Iref .
In the reference image Ĩ, the largest connected white area was dissected by tracing the
boundaries. The centre of the particle was identified as the centre of gravity of an ellipse
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fitted to the boundary. The sinking velocity was determined from a sequence of images by
calculating the five-point central difference of the particle’s position over time.

The schlieren method allows for the reconstruction of density perturbations based
on refractive index changes (e.g. Yick, Stocker & Peakock 2007). These refractive
index changes were visualised using a pattern consisting of randomly distributed dots
with varying brightness. The pattern was printed onto waterproof transparent paper
and attached to the inner wall of the flow tank, and laterally illuminated by two
diffuse 150 W halogen lamps. The pattern was imaged at 1 Hz using an SLR camera
(Nikon D90) fitted with an AF-S Nikkor lens ( f = 45 mm, f number = 1.4 to 16)
installed Lc = 20 cm in front of the tank. The field of view was 10 cm × 5 cm, at a
resolution of 49 μm px−1. As reference, 10 images were obtained and averaged in an
undisturbed situation. Subsequently, a particle was released and the density-disturbed
image was recorded and cross-correlated with the reference image using PIV View 2C
(Pivtec, Göttingen, Germany) to determine the displacement of the random pattern. The
interrogation windows for the cross-correlation consisted of 24 px × 24 px with 50 %
overlap, resulting in a 12 px × 12 px grid. In this set-up, the maximal traceable shifts were
∼10 μm at a spatial resolution of 588 μm. Based on the displacement image, the density
field was reconstructed using a tomographic algorithm (Appendix A). Experiments were
performed in 13 density stratifications of different strengths with 10 replicate particles and
were optimised to resemble the Reynolds and Froude numbers of the numerical model.
Schmidt numbers were above 700 and of O(1000–10 000). Permeabilities of the fibre
particles were measured to be k = 3.87 × 10−12 m resulting in Darcy numbers of O(10−6)

(Dörgens et al. 2015); see also figure 13 and table 1 for an overview of the experiment
parameters.

2.2. Model formulation
High-resolution numerical simulations were performed to obtain the density and flow
fields. The model was adapted from an earlier formulation used for the investigation of
stratification drag enhancement of non-porous spheres (Torres et al. 2000; Larrazabal,
Torres & Castillo 2003; Yick et al. 2009; Liu, Kindler & Khalili 2012). We considered the
flow of a linearly stratified fluid at constant velocity W past a stationary sphere:

∂u
∂t

+ 1
ε

u · ∇u = −ε∇p − ρ′

Fr2 j + 1
Re

∇2u − A
ε

DaRe
u, (2.1)

∂ρ′

∂t
+ 1
ε

u · ρ′ = w − 1 + 1
ReSc

∇2ρ′, (2.2)

where length is scaled by a, velocity by the undisturbed velocity W (resembling the
constant settling velocity), pressure perturbations by ρ0W2 and density perturbations
ρ′ by −aγ . The density perturbation represents the density contrast induced by the
particle in comparison to an undisturbed linearly stratified fluid: ρ′ = (ρ − ρB)/(−aγ ) =
�ρ/(−aγ ), where ρB is the density of the undisturbed ambient fluid in linear stratification
and −aγ is the vertical density change along one particle radius. Therefore the density
contrast �ρ/(−aγ ) can be interpreted as the deflection distance of the pycnoclines from
their equilibrium position.

Here, u = (u,w) is the fluid velocity vector with radial and vertical components, p is
the pressure, j is the vertical unit vector, positive upwards, ε is the porosity of the particle
and Da = k/a2 is the Darcy number, with k the permeability. The Darcy number was
adjusted to Da = 10−12, which is comparable to permeabilities of k = 10−18 to 10−16 m
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Porous particles settling in stratification

(for particle radii in the range a = 10−4 to 10−3 m) and, therefore, resembling that for
typical impermeable marine particles (Kiørboe et al. 2002) (see also figure 14 for tests on
permeability effects). The fluid domain is defined by ε = 1,A = 0, where A is a binary
switch, and the particle by ε = 0.95, A = 1 (Basu & Khalili 1999). For the numerical
implementation a quasi-two-dimensional model was employed using a lattice Boltzmann
method for axial symmetric flows (see figure B for numerical implementation, grid system
and boundary conditions). Model convergence was ensured through the drag coefficient
and interstitial density. When changes were less than 10−7 between 1000 time steps, the
model was considered to be converged (figure 17). Simulations were performed for both
porous and solid spheres for the parameter regime spanned by 0.05 ≤ Re ≤ 10 and 0.1 ≤
Fr ≤ 100 at Schmidt number Sc = ν/D = 700, where ν is the kinematic viscosity and D
the diffusion coefficient.

The momentum-exchange and stress-integral methods were employed to evaluate the
force on the sphere. Namely, the drag coefficient CS

D was computed as the sum of the
pressure and viscous drag coefficients, CS

P and CS
V , respectively:

CS
P = − 1

1
2
ρW2πa2

∫
S

pn · j dS, (2.3)

CS
V = 1

1
2
ρW2πa2

∫
S
μn · ((∇u)+ (∇u)T) · j dS, (2.4)

where n is the unit vector normal to the sphere’s surface S and μ the dynamic viscosity.
Henceforth, we express the stratification drag force normalised by the drag force in the
absence of stratification (CH

D ): CN
D = CS

D/C
H
D .

In order to explore the mechanisms governing the drag enhancement by stratification, a
force decomposition scheme was applied following Zhang et al. (2019). The velocity and
pressure fields were decomposed into the form u = uH + uρ and p = pH + pρ with

∂uH

∂t
+ 1
ε

uH · ∇uH = −ε∇pH + 1
Re

∇2uH − A
ε

DaRe
uH, (2.5)

∂uρ

∂t
+ 1
ε
(uρ + uH) · ∇uρ + 1

ε
uρ · ∇uH = −ε∇pρ + 1

Re
∇2uρ − ρ′

Fr2 j − A
ε

DaRe
uρ,

(2.6)

where (uH , pH) are the velocity and pressure in the homogeneous fluid and (uρ ,
pρ) are density-induced contribution in stratified fluid. The buoyancy-induced pressure
disturbance in the ambient fluid can further be decomposed into the form pρ = pρρ +
pρu + pρω, where pρω obeys a Laplace equation, while the remaining two contributions
satisfy

∇2pρρ = − 1
Fr2 ∇ρ′ · j, (2.7)

∇2pρu = −∇ · {(uρ + uH) · ∇uρ + uH · ∇uρ + uρ · ∇uH}, (2.8)

with pρρ and pρu vanishing in the far field. These two Poisson equations were solved by
a lattice Boltzmann method (Chai & Shi 2008). The external stratification-induced forces
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can then be expressed as

CN
D − 1 = − 1

1
2
ρW2πa2CH

D

∫
S

pρρ j dS

︸ ︷︷ ︸
Fρρ

− 1
1
2ρW2πa2CH

D

∫
S

pρuj dS

︸ ︷︷ ︸
Fρu

. . .

+ 1
1
2
ρW2πa2CH

D

∫
S

T ρω · j dS

︸ ︷︷ ︸
Fρω

, (2.9)

where T ρω = −pρω + μ((∇up)+ (∇up)
T) is the vorticity-induced stress tensor. The

contribution Fρρ is an additional Archimedes-like force due to the deflection of the
isopycnals, Fρu is an inertial force associated with up and Fρω results from the
vorticity-induced baroclinic torque (vortical force). The contributions of Fρu and Fρρ are
directly calculated by solving the Poisson equations (2.7) and (2.8); Fρω is subsequently
determined as Fρω = CN

D − 1 − Fρu − Fρρ .
The numerical method was verified in three steps. The first was confirming that the

homogeneous drag coefficients (in the absence of stratification) of solid as well as porous
and impermeable spheres converged towards common values (figures 3a and 17b). The
homogeneous drag coefficients were found to closely resemble the empirical relation
(White 2005)

CH
D = 12

Re
+ 6

1 + √
2Re

+ 0.4. (2.10)

Second, the implementation of stratification was tested by comparing our results for solid
spheres with earlier quantitative results on stratification drag enhancement (Zhang et al.
2019) (figure 3b) showing excellent agreement for the normalised stratification drag CN

D,
as well as the two force components Fρρ and Fρω at Re = 0.05. Results of additional tests
on the convergence criteria for various Re and Fr are shown in figure 17.

Third, the geometries of the modelled and experimentally determined density
perturbations were compared (figure 15a,b). The overall pattern qualitatively confirms
earlier results based on solid spheres (Yick et al. 2009; Zhang et al. 2019). In the vicinity
of the particle, lighter fluid is entrained, forming a density boundary layer with strongly
compressed isopycnals. At the lee side, a wake is formed which extends to a distance
of several radii. For Re = 0.66 and Fr = 1.37, the boundary layer is narrow, resulting
from the dominance of buoyant forces, while for Re = 0.1 and Fr = 0.88 viscous forces
dominate, resulting in a wide wake and wide boundary layer. Overall, the numerical model
represents the observed geometry well for non-dimensional density contrasts (compared
with the undisturbed linear stratification) above values of 0.1, i.e. densities displaced by
more than one-tenth of the particle radius. For weaker density contrasts, deviations become
visible for more strongly stratified fluids, which can be attributed to variations in the
Schmidt number. As the Schmidt numbers of the experiments were exceeding Sc = 700,
we subsequently focus on the numerical model and refer to experimental validations
whenever possible.
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Figure 3. Model validation based on comparison with existing literature. (a) Reynolds number dependence
of the homogeneous drag coefficient CH

D of solid and porous spheres as compared with the empirical relation
(2.10) of White (2005) (see figure 17 for logarithmic representation). (b) The normalised drag coefficient CN

D
of solid spheres settling in linear stratification as a function of the Froude number Fr in comparison with direct
numerical simulations obtained by Zhang et al. (2019) for Re = 0.05. Here F refers to stratification-induced
forces, and Fρρ , Fρω and Fρu are the force components of CN

D . See text for further information.

3. Results and discussion

3.1. Flow and concentration fields
The mean adjusted flow fields around porous and solid spheres are characterised by a
vertical succession of recirculation regions (figure 4). Stratification brings about a form
of vertical confinement of the flow, as the relative buoyancy of a fluid parcel restricts its
vertical deflection. The entrainment of lighter fluid yields a horizontal density gradient
in the wake of the particle which translates into baroclinic torque. As a result, toroidal
vortices are formed, in agreement with analytical solutions for low-Reynolds-number point
forces in a stratified fluid (List 1971; Ardekani & Stocker 2010) and the recent analysis of
solid-particle settling in density gradients (Zhang et al. 2019).

The structure of the velocity field is found to be largely the same for porous
and impermeable particles. The flow field in the vicinity of the sphere features two
distinct regions separated by a rear stagnation point (red dot, figure 4). Entrained fluid
surrounding the sphere effectively travels with the sphere, implying the deformation of
the isopycnals, while further downstream the isopycnals are detached and relax towards
their equilibrium position. In accordance with Zhang et al. (2019), the flow structure
shows a strong dependency on stratification strength and viscosity for large Péclet numbers
Pe = aW/D = ScRe ≥ 1.

The velocity fields contain a first indication of two different regimes which can be
identified with two of the stratification regimes R2 and R3 as described by Zhang
et al. (2019) (cf. § 3.4). For faster settling and stronger stratification, the stagnation point
approaches the sphere surface (figure 4c), which is consistent with the formation of a
rear buoyant jet at larger Reynolds numbers Re ≥ O(10) (Torres et al. 2000; Hanazaki,
Kashimoto & Okamura 2009; Okino, Akiyama & Hanazaki 2017) corresponding to
regime 2, R2, for Sc−1/2 � Fr � Re−1 (retaining the notation of Zhang et al. (2019)).
For the opposing case of weaker stratification, the stagnation point increasingly recedes
from the sphere (figure 4d) and the asymmetry of the velocity field vanishes at
Fr ≥ O(100) when buoyant forces become negligible and the flow field is largely
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Figure 4. Lattice Boltzmann simulations presented as streamlines and scaled vertical velocity w/W − 1
(left-hand side of each panel) and isopycnals combined with the scaled density contrast�ρ/(−aγ ) (right-hand
side). (a) Solid sphere at Re = 0.05, Fr = 1. Porous sphere at (b) Re = 0.05, Fr = 1 (regime R2; cf. Zhang
et al. 2019); (c) Re = 0.5, Fr = 1 (R2); (d) Re = 0.5, Fr = 10 (R3). The red dots in (a–d) indicate the position
of the rear stagnation points. (e–h) Zoomed depictions of (a–d).

determined by viscous forces, corresponding to regime 3, R3, Fr 
 Re−1 (Zhang et al.
2019).

In the proximity of the sphere surface, distinct differences between porous and solid
cases were observed. For the porous case, the stagnation point is consistently closer to the
surface for small Fr and large Re, while as the stagnation point recedes from the surface
(Fr 
 Re−1) these differences vanish (figure 5a). The position of the stagnation point
is associated with the vertical velocities in the wake which indicate enhanced ascending
velocities for stronger stratification, i.e. small Fr, and large Re.

The differences in velocities in the wake can be associated with an enhanced density
contrast of the boundary layer fluid (figure 5b). Diffusive exchange with the interstitial
pore fluid at the particle surface alters the density contrast of the density boundary layer
while the boundary layer thickness remains largely unchanged when compared to solid
particles (figure 5c). The thickness of the density boundary layer shows a dependency on
Fr and Re. The equatorial concentration profiles indicate substantial advective exchange
of boundary layer fluid visible as slight kinks in the concentration profile at the sphere
surface in figure 5(c) which implies lower-density fluid being fed into the wake altering
the density contrast of the wake fluid, too.
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Figure 5. (a) Modelled vertical velocity profiles in the centre of the wake (r/a = 0; solid and dashed lines
depict porous and solid sphere values, respectively). (b) Density perturbation in the centre of the wake (r = 0)
and (c) the corresponding density perturbation in the boundary layer at the equator (z/a = 0, cf. figure 4a–c)
and inside the porous particle. The shaded areas indicate the particle interior.

The diffusive exchange between interstitial and boundary layer fluid controls the
mass adaptation of the particle. Thus, the diffusive exchange also impacts the external
density and velocity field, altering the stratification drag enhancement. The overall mass
adaptation of the particle itself is limited by the viscous turnover of boundary layer fluid.
To rationalise the effect of the diffusive exchange of interstitial and boundary layer fluid,
we derive scaling laws for the density boundary layer thickness, the density contrast of the
density boundary layer and the interstitial density in the following sections.

3.2. The density boundary layer
In the case of porous spheres, the diffusive exchange of interstitial and ambient fluid
potentially alters the fluid density in the direct vicinity of a particle. We consider
this altered layer as a density boundary layer, which can enhance the Archimedes-like
contribution to stratification drag enhancement. The thickness of the density boundary
layer, δ, buffers the diffusive exchange between the external density field and the interstitial
liquid.

Here, δ was estimated as the azimuthal stoss-side average of the distance between the
porous sphere surface and the point at which the normalised density contrast increased
to 95 % of that of the ambient fluid. The 95 % threshold is an operational definition and
changing this threshold will affect the determined volume. For example, a 99 % threshold
results in an increase of δ by 60 % and an 80 % threshold will decrease δ by 30 %. However,
while the magnitude is sensitive to the threshold, we did not observe an effect on the
scaling slopes. In accordance with the flow field, we observed a regime separation at Fr ≈
Re−1 (figure 6a). The best fit to our results (figure 6b,c) yields

δR2

a
= 0.45Re−0.66Fr0.61 (3.1)

and
δR3

a
= 1.1Re−0.71Fr0.14. (3.2)

In regime R2, when stratification is strong, the impact of diffusion vanishes and the
density boundary layer thickness can be rationalised by the balance of viscous and buoyant
forces through the natural length scale δ ∼ (ν/N)1/2, which implies δ/a ∼ (Fr/Re)1/2
(Yick et al. 2009). In regime R3 the influence of Fr, i.e. buoyant force, becomes negligible
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Figure 6. Scaling of the boundary layer thickness δ/a for Re = 0.5 and Re = 0.05 (a) and as a generalised
empirical relation for regime R2 (b) and regime R3 (c). The boundary layer density contrast �ρδ for Re = 0.5
and Re = 0.05 (d) and as a generalised empirical relation for regime R2 (e) and regime R3 ( f ). (g) The scaling
relationships for�ρp/(−aγ ) within the two regimes for Re = 0.5 and Re = 0.05 in log–log representation and
the generalised empirical relation for the density contrast as a function of Re and Fr for regime R2 (h) and
regime R3 (i). Blue and orange coloured symbols refer to regime 2 and regime 3, respectively (cf. figure 10).

and the boundary layer thickness is largely defined by the interaction of inertial and viscous
forces, represented through Re. Overall, experiments and numerical results match well in
both regimes. The density boundary layer fluid volume is found to be largely independent
of diffusive exchange with the particle pore fluid – as indicated by isopycnals for porous
and solid spheres (figure 5c,d) as well as the scaling in (3.1) and (3.2).

The density contrast of the boundary layer is, however, determined by the interaction
of the external forcing through the ambient fluid and diffusive equilibration with the
interstitial fluid. The density contrast of the boundary layer fluid with respect to an
undisturbed stratified fluid �ρδ/(−aγ ) was evaluated as the average within the shell with
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width δ/a surrounding the particle (figure 6d–f ). The best collapse (in terms of least square
errors) was found for

�ρδ,R2

−aγ
= (ρδ − ρB)

−aγ
= −39Re0.43Fr0.26 (3.3)

and
�ρδ,R3

−aγ
= −40Re0.45Fr0.06, (3.4)

where ρδ represents the density of the density boundary layer and �ρδ its excess density
with respect to the ambient fluid. The simulations seem to overestimate the experimentally
derived density contrast of the density boundary layer. The mismatch likely results from
not completely negligible permeability in the experiments (cf. figure 14) and the fact
that the experiments did not reach perfect stationarity. Further away from the sphere, the
concentration fields demonstrate little effect of porosity when compared with those of solid
spheres, where the boundary layer fluid passes into a slender concentration wake structure
downstream from the sphere, extending up to O(10a) in length (figure 4b,c).

3.3. Interstitial mass adaptation
The interstitial mass adaptation is controlled by the density boundary layer, i.e. the mass
adaptation of the particle generally depends on the viscous and buoyant forces in the
external flow field. The pore fluid excess density �ρp was evaluated as the spatial average
of the interstitial density contrast:

�ρp

−aγ
= − 3

2a4γ

∫
v

�ρ dv, (3.5)

where �ρ = ρp − ρB. The interstitial pore water density was found to increase as �ρp ∼
Pe (data not shown). The remaining Froude number dependence can be ascribed to the fact
that viscous exchange in the density boundary layer mitigates the exchange between the
interstitial and the ambient fluid. The boundary layer density ρδ is reduced with respect to
an undisturbed density field ρ.

Following Fick’s first law, the dimensional diffusive exchange between the particle and
the surrounding density boundary layer can be approximated via a shell model:

∂ρp

∂t
∼ 3

D
εa2 (ρδ − ρp), (3.6)

where ρδ can be exchanged by our scaling relationships (3.3) and (3.4) for the two regimes
(figure 6d–f ):

∂ρp

∂t
∼ 3

D
εa2

(
αRenFrm − ρp − ρB

)
, (3.7)

with α = 39aγ , n = 0.43, m = 0.26 in regime R2 and α = 40aγ , n = 0.45, m ≈ 0 in R3.
Settling is steady when the rate of change of the boundary layer density is equivalent to

that of the external field experienced by the particle:

∂ρp

∂t
= ∂ρδ

∂t
= γW. (3.8)

Under these conditions a direct relationship between �ρp/−aγ and �ρδ/−aγ can
be derived. The transport equation (2.2) inside the porous particle reduces to the
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non-dimensional diffusion equation:

∇2
(
�ρ

−aγ

)
= ReSc. (3.9)

The density flux through the surface of the particle is balanced by the changing external
field:

4πa2J = VpεReSc, (3.10)

where J is the flux normal to the particle surface and Vp is the volume of the particle.
Based on the integration of (3.9) with the boundary conditions in (3.10) one can calculate
the density distribution inside the particle:

�ρ(r)
−aγ

= 1
6
εr2ReSc + c, (3.11)

where c is the integration constant. Based on (3.11) the averaged density on the surface
is �ρδ/(−aγ ) = 1

6εReSc + c and the averaged density inside the particle is �ρp/−aγ =
1
10εReSc + c. The difference of the averaged density of the interstitial pore water and the
density in the boundary layer then is �ρp/−aγ = −44Re +�ρδ/−aγ (for Sc = 700),
which implies that the scaling relationship �ρδ also applies for �ρp if shifted by 44Re.
Indeed, best fit to our simulations gives close results to the analytical solution (figure 6g–i):

�ρp,R2

−aγ
= ρp − ρB

−aγ
≈ −39(Re + Re0.43Fr0.26), (3.12)

�ρp,R3

−aγ
= ρp − ρB

−aγ
≈ −40(Re + Re0.45), (3.13)

for the non-dimensional interstitial fluid density contrast with respect to the ambient fluid.
In regime 3, the effects of Fr become vanishingly small which, however, does not imply
that effects of stratification are negligible. The delay of mass adaptation depends on the
boundary layer thickness determined through the viscous forces.

3.4. Drag enhancement versus mass adaptation
The settling of porous particles in stratification is reduced compared to settling in an
unstratified fluid by both the delayed mass adaptation of the interstitial pore fluid and
external buoyancy-induced forces represented through the stratification drag coefficient
CS

D.
Note that we attribute all external forces, the additional Archimedes-like forces of the

density boundary layer (Fρρ), the inertial force (Fρu) as well as forces due to vorticity
(Fρω) to drag while the term density adaptation refers to the density adjustment of the pore
fluid inside the particle only. We consider a scaling law for the normalised stratification
drag CN

D = CS
D/C

H
D depending on Re and Fr (figure 7d), with the best fit yielding

CN
D,R2 − 1 = 3.25Re0.51Fr−1.1 (3.14)

and
CN

D,R3 − 1 = 2.51Re0.1Fr−1.45. (3.15)

In R2, the drag coefficient is close to that for the solid case CD ∼ Ri0.5 confirming the
results of Yick et al. (2009). In R3 the increase in drag is largely independent of Re and is
mainly controlled by Fr, i.e. the ratio of inertia and stratification strength.
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Figure 7. Scaling relationship for the normalised drag coefficient of a porous particle settling in stratification.
(a) The normalised drag coefficient CN

D as function of Fr for Re = 0.05 and Re = 0.5. The global scaling of
CN

D as a function of Re and Fr for regime 2 (b) and regime 3 (c). The experimental results are shown as circles
with error bars. Blue and orange coloured symbols refer to regime 2 and regime 3, respectively (cf. figure 17).

In the case of porous particles, the gradients in the density boundary layer are steepened
compared to the case of solid particles. To investigate the effect of these steepened
gradients on the exerted external forces on the porous particles, we applied a force
decomposition ((2.9) and figure 8). In regime R2, stronger gradients in the density
boundary layer and in the wake are found to translate into an additional augmentation
of Fρρ and Fρω as compared to the case of solid particles (figure 8a,b).

To quantify within the two regimes, we found the vortical force to scale as

Fρω,R2 ∼ (ReFr)−0.69 (3.16)

and
Fρω,R3 ∼ Re−0.62Fr−1, (3.17)

which is very similar to the values of a solid particle which Zhang et al. (2019) found to
scale as Fρω,R2 ∼ (ReFr)−0.67 and Fρω,R3 ∼ (ReFr)−1. Differences in regime 3 are likely
to be associated with a smooth transition from the intermediate- to low-Reynolds-number
regimes (Zhang et al. (2019) found Fρω,R3 ∼ Re−0.5Fr−1 for intermediate Reynolds
numbers). Overall the external forces associated with the toroidal eddies follow similar
scaling relationships between porous and solid particles. However, and with exception for
very small Froude number at Re = 0.5, we found an increase in the magnitude of Fρω in
the case of porous particles. This effect is associated with the strongly increased density
contrast in the wake of the particles fed by the interstitial pore water (figure 6b) which
results in an increased vortex production in the external field.

In the case of solid particles, the Archimedes-like force Fρρ was found to play a
secondary role for stratification drag enhancement (Zhang et al. 2019). We found Fρρ to
scale as

Fρρ,R2 ∼ Re−0.47Fr−1.7 (3.18)

and
Fρρ,R3 ∼ Re−0.59Fr−2, (3.19)

contrasting with the solid-particle case where, in both regimes, Fρρ ∼ Fr−2 (Zhang et al.
2019). Differences are mainly associated with the additional Re dependency that indicates
the contribution of enhanced density contrast in the boundary layer fluid (�ρp ∼ Re for
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Figure 8. The normalised drag coefficient of solid and porous spheres settling in linear stratification CN
D as

a function of the Froude number Fr for (a) solid, Re = 0.05, (b) porous, Re = 0.05, (c) solid, Re = 0.5 and
(d) porous, Re = 0.5. Here F refers to stratification-induced forces. Dots indicate at which Fr numbers model
runs were performed.

Sc = const.; see also figure 6). The mass force exerted by the density contrast between
pore water and ambient fluid is

Fm ∼ 4/3πa3g�ρp

0.5CH
DρW2πa2

∼ 1
Fr2CH

D

�ρp

(−aγ )
. (3.20)

Mass force Fm is reduced due the light fluid travelling in the interior of the porous particle
(figures 5c,d and 6). The effect of stratification on the mass force Fm is specific for
porous particles and does not directly result in a drag enhancement, but decreases the
settling velocity through the reduction of the excess density (see also § 4). At low Re
and weak stratification (Fr > 1) the contribution of Fm is negligible (figure 9a). However,
at larger Re and stronger stratification (Fr < 1) the density contrast is substantially
increased and Fm even exceeds the contribution of the external forces CN

D (figure 9b).
In direct comparison between solid and porous particles, we found for Re = 0.05 the
buoyancy-induced Archimedes-like and mass forces to increase by a factor of 2 to 7 and 8
to 44 for Re = 0.5 (figure 8b). In conclusion, in the case of porous particles the buoyancy
forces induced by the water volume travelling with the porous spheres, Fρρ and Fm, are
non-negligible and comprise a range similar to that of Fρω.
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Figure 9. Normalised mass force of the interstitial pore space Fm for (a) Re = 0.05 and (b) Re = 0.5. The
dashed line indicates the separation between the two regimes, R2 and R3. Here F refers to stratification-induced
forces.

4. Implications for particle settling in stratified marine environments

Under in situ oceanic conditions, it is generally difficult to quantify all variables that
determine the sinking velocity of heterogeneously composed marine aggregates. This
has impeded direct in situ analysis of the effects of stratification on particle settling.
Nevertheless, a limited number of experimental or indirect in situ measurements have
suggested an effect of stratification on the sinking velocity of large marine aggregates
(>500 μm), known as ‘marine snow’ (MacIntyre et al. 1995; Alldredge et al. 2002; Prairie
et al. 2015).

To quantify the potential effect of stratification on settling of marine aggregates, we
estimate the retention of porous 95 % and impermeable spheres in linear stratifications of
varying strength (from N = 0.01 to 1 s−1). We consider the balance of buoyancy and drag
force:

4
3
πa3ρa

dW
dt

= (ρa − ρB)
4
3
πa3g + ρ

2
CS

Dπa2W2, (4.1)

where the Basset history force was neglected. The particle density is defined as
ρa = (1 − ε)ρs + ε(ρB +�ρp), with ρs the hydrated excess density of the solids. The
interstitial density and stratification drag enhancement are calculated based on the
derived scaling-law equations (3.12), (3.13), (3.14) and (3.15) (see also Appendix C). To
determine the effect of the boundary layer fluid in buffering the diffusive exchange of the
particle with the ambient stratified fluid, we further applied (3.7) assuming instantaneous
homogenisation of the pore water. The parameters are chosen to resemble those of
marine aggregates in stratified oceanic environments. Marine aggregates feature hydrated
excess densities of the solids (ρs − ρB) of about O(0.01) to O(100 kg m−3) (Alldredge &
Gotschalk 1988), porosities 
0.95 (Alldredge & Gotschalk 1988) and sinking velocities
of about 4 to 416 m d−1 (e.g. Iversen & Lampitt 2020), which leads to an intermediate
Reynolds regime of 0.05 ≤ Re ≤ 20. Considering typical buoyancy frequencies in the
ocean and salt lakes (N = 0.001 to 0.1 s−1) (Boehrer & Schultze 2008; Geyer et al. 2008)
as well as strong stratification in estuaries and fjords (N = 0.1 to 0.3 s−1) (Geyer et al.
2008), Froude numbers typically fall in the range 1 ≤ Fr ≤ 100, and in extreme cases
as low as O(0.01). These parameter ranges imply that natural marine aggregates fall into
both the R2 and R3 regimes. Further, it is important to notice that our parameterisation
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Figure 10. (a) Time trajectories of a porous sphere (a = 1 mm, ρs − ρB = 10 kg m−3) settling in a state of
instantaneous mass adaptation (dashed curve), delayed mass adaptation (blue) and delayed mass adaptation
in the presence of a density boundary layer (orange), in a stratification of N = 0.2 s−1. For comparison, the
trajectory of a solid sphere of equal initial excess density is depicted (black curve). (b) Size dependence of the
normalised retention time of porous spheres settling at Pe ≥ O(10) for weak (N = 0.02 s−1) and strong (N =
0.2 s−1) stratification. Filled areas indicate the contribution to retention time by delayed mass adaptation (blue)
and buffered delayed mass adaptation (orange). The retention time t was calculated based on the travelling
distance along one particle diameter and scaled by that of a sphere with instantaneous diffusive equilibration t0.

represents the flow regime of particles within stratification. This implies, for example,
that a porous particle featuring a particular Re in linear stratification (and hence W being
constant) will have a higher Re under homogeneous fluid conditions (assuming ν to be
identical). Our scaling laws can thus be applied to a wider Re range if settling velocities
and associated flow regimes are determined in homogeneous fluids (see also Appendix D).

The concurrent processes of delayed mass adaptation and drag enhancement increase
the retention time of particles (figure 10a). This increase strongly depends on particle
size and buoyancy frequency (figure 10b). Generally, stratification-induced processes start
to influence the retention time of particles for N > 1 × 10−4 s−1. For weak stratification
(N ≤ 0.02 s−1) or small particles (a < 200 μm), the increase in retention time is below
10 %, mainly due to drag enhancement (see figure 11). By contrast, mass adaptation
dominates the retention enhancement for particles >0.5 mm and reduces their sinking
velocities by 10 % to 100 %. Under strong stratification (N > 0.2 s−1), the sinking velocity
of large particles (a > 1 mm) thus can even drop to almost zero, which contrasts with
the typical expected increasing sinking velocity with size in non-stratified fluids. For
frequently measured intermediate stratification strengths (N = 0.05 s−1) and abundant
particle sizes (a = 1 mm) the settling velocity is expected to be reduced by 5 %–15 %
due to the combined effect of drag enhancement and delayed mass adaptation.

In contrast to diffusion-limited retention in two-layer stratification, i.e. sharp
pycnoclines (Panah et al. 2017), the increase in retention time in linear stratification is
not driven by a transient diffusive exchange, but instead by the equilibrium of diffusive
exchange of pore water and the density change in the surrounding water column, and
hence W = const. (see also extended discussion in Appendix E). Nevertheless, we found
the density boundary layer to buffer diffusive exchange in accordance with studies focusing
on two-layer stratification (Camassa et al. 2013). Increased retention of marine aggregates
through slower settling, however, can occur over several to tens of metres due to the large
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Figure 11. Contour lines indicating the increased retention (t/t0 − 1) in the phase space of radius a and
buoyancy frequency N. Contour line labels represent exponents of basis 10. (a) Solid hydrated density is
adjusted to resemble solid particles such as faecal pellets and coccolith aggregates (ρs − ρB = 100 kg m−3).
(b) Solid hydrated density is adjusted to resemble light diatom aggregates (ρs − ρB = 10 kg m−3).

extension of pycnocline layers under typical oceanic conditions, which are here considered
as linear stratification. In addition, the settling and retention are strongly modulated
by composition of aggregates (figure 11a,b). Composition of marine aggregates affects
ρs, thus Re and Fr, and hence the location of the regime transition (between R2 and
R3) in the phase space (i.e. size–buoyancy frequency). Lighter marine aggregates (e.g.
made from diatoms; Alldredge 1998) settle slowly, which shifts the parameter range to a
lower-Reynolds-number regime reducing the effects of delayed mass adaptation and drag
enhancement compared with heavier particles (e.g. faecal pellets or coccolith aggregates;
Alldredge 1998). Thus, stratification will lead to a stronger reduction in settling velocity
for diatom-composed aggregates than for heavy particles such as coccolith aggregates and
faecal pellets.

The increased retention time of marine aggregates and their ongoing microbial
degradation may lead to a substantial decrease in carbon export to the deep ocean. To
estimate such potential changes in carbon sequestration due to projected increase of ocean
stratification (Bopp et al. 2013) requires the representation of stratification-dependent
sinking velocity in Earth system models. For this purpose, biogeochemical models need to
adequately capture the size spectrum and excess density of marine aggregates (e.g. Maerz
et al. 2020). This enables one to apply (3.12), (3.13) and (3.14), (3.15), respectively, to
allow for studying the effect of stratification-dependent sinking on biogeochemical cycles
in regional- to global-scale models. In summary, the presented results and mechanistic
processes in our study demonstrate the potential importance of ocean stratification for the
settling velocity of marine aggregates and thus for the strength of the biological carbon
pump.

5. Conclusions

Experiments and numerical simulations revealed a pronounced impact of linear
stratification on settling velocity of highly porous, impermeable spheres. In the Reynolds
and Froude number regime characteristic for marine environments, delayed mass
adaptation of the interstitial fluid and stratification drag enhancement concurred in slowing
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the sinking of porous spheres. The density boundary layer was found to mitigate the
diffusive exchange of stratifying agent, serving as a buffer layer around the spheres.
The interrelation of the density boundary layer, the diffusive exchange of interstitial and
boundary layer fluid and the settling velocity can be rationalised in scaling laws within two
stratification regimes. The key parameters are the non-dimensional density contrast (3.12)
and (3.13) and the normalised drag coefficient (3.14) and (3.15). Applying the scaling laws
in a rather simple model revealed that the retention time strongly depends on particle size
and buoyancy frequency. According to our results and for the case of marine particles,
settling of smaller particles (a < 0.2 mm) is mainly affected by enhanced drag that
increases the retention by up to 10 %, while for larger particle sizes (a > 0.5 mm) delayed
mass adaptation reduces settling velocity by 10 % and up to ∼100 %. The results emphasise
the potential importance of stratification for vertical carbon fluxes. The relationships
derived here can be directly incorporated in biogeochemical models, which perspectively
enables the quantitative assessment of the impact of stratification-dependent sinking of
marine aggregates on carbon sequestration.
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Appendix A. Reconstructing the density fields

For this investigation, an inverse tomographic algorithm was implemented to reconstruct
the three-dimensional density distribution following Liu, Merzkirch & Oberste-Lehn
(1988), based on the speckle displacement. The reconstruction of finite-density
perturbations based on the schlieren method has been used in various applications (Kindler
et al. 2007; Yick et al. 2007). Assuming a light ray propagating perpendicular to a
perturbed density field (Lp), it is deflected around the particle due to changes in the
refractive index field. In mathematical terms, the deflection reads

tanψ(x,z) =
∫

1
n(x, z)

∂n
∂(x, z)

dy, (A1)

where ψ is the deflection angle, n the index of refraction and y the line of sight. Assuming
that the fluctuations of the refractive index field are much smaller than the mean of the
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Figure 12. Parameter spaces of recent literature for two-layer stratification (a) and linear stratification (b). The
dashed line indicates the most recent in situ measurements performed by Iversen & Lampitt (2020). Note that
there is a difference in the Reynolds number calculations, i.e. for two-layer stratification the Reynolds number
is calculated based on the settling in an unstratified fluid while in the cases of linear stratification the Reynolds
number is based on the stationary settling velocity in stratification.
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Figure 13. (a) Schmidt numbers Sc for different glycerol–water mixtures based on empirical relationships.
Note that density and viscosity for experiments were measured. (b) Reynolds Re and Froude Fr numbers of the
schlieren experiments relevant to this study.

refractive index (n0), the deflection angle is related to the Radon transform of the density
perturbation (ρ′) by a constant a:

ψ(x,z) ≈ a
∫

∂ρ′

∂(x, z)
dy. (A2)

This deflection can be visualised using the background oriented schlieren technique.
Assuming a slice of the density field and rotational symmetry, polar coordinates may be
introduced: x′ = x cos θ + y sin θ , y′ = −x sin θ + y cos θ . The Fourier transformation of
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Figure 14. The effects of permeability on the drag coefficient (a) and the density contrast of the particle (b) for
Re = 1 and Fr = 1. The shaded areas indicate the range of permeabilities of the fibre particles which were used
for the experiments. Red line indicates the parameterisation of the model (Da = 10−12).

the deflection angles and the density field reads

F (ψ){kx′, θ} =
∫ ∞

−∞
ψ(x′, θ) exp(−2πkx′x′) dx′,

F (ρ′){kx′, θ} = a
∫ ∞

−∞

∫ ∞

−∞
ρ′ exp(−2πkx′x′) dx′ dy′,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A3)

where k′
x denotes the wavenumber in the Fourier domain. From (A1) it follows that

F (ρ′) = F (ψ)/i2πkx′ and calculating the inverse Fourier transform yields

ρ′(x, y) = a
∫ π

0

∫ ∞

−∞
|kx′ |

2πkx′ i︸ ︷︷ ︸
=Q(k′

x)

·F (ψ){kx′, θ} dkx′ dθ + ρB, (A4)

where Q(kx′) is a ramp filter applied in the Fourier domain. Applying the convolution
theorem and introducing the undisturbed background density (ρB) yields

ρ(x, y) = a
∫ π

0
Q(kx) ∗ ψ(kx′, θ) dθ + ρB. (A5)

The inverse Radon transformation and integrations were performed in Matlab
(Mathworks 2017b). The density slices were stacked vertically and azimuthally averaged
to a two-dimensional plane through the particle centre section. To reduce high-frequency
noise, the ramp filter was convoluted with a Hamming window. Examples of the density
perturbations are shown in figure 15.

Appendix B. Lattice Boltzmann method

Because of the axial symmetry of the problem, a quasi-two-dimensional model can be
employed using a lattice Boltzmann method for axial symmetric flows (Guo et al. 2009;
Zheng et al. 2010a,b). The evolution equations for velocity u and density perturbations
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Figure 15. Density contrast reconstructed from experimental observations (a) for settling porous spheres
compared to the lattice Boltzmann simulations (b) for two contrasting cases: (a) Re = 0.66, Fr = 1.37 and
(b) Re = 0.1, Fr = 0.88. The black lines indicate isopycnals. The dashed lines in (a) indicate scaled density
contrasts of O(10−3). Note that the shown axis limits of the simulation are limited to 5a, while the total model
domain is 52a.

ρ′ read

fi(x + eiδt, t + δt)− fi(x, t) = − 1
τf
( fi(x, t)− f (eq)

i (x, t))+ Fi(x, t), (B1)

gi(x + eiδt, t + δt)− gi(x, t) = − 1
τg
(gi(x, t)− g(eq)

i (x, t))+ Gi(x, t), (B2)

where fi(x, t) and gi(x, t) are the single-particle distribution functions at position x and
time t along the direction represented by the subscript i for fluid and density perturbation,
respectively.

Using the two-dimensional D2Q9 model (Qian, D’Humières & Lallemand 1992),
the discrete velocities were defined as ei = (eir, eiz) : i = 0, 1, . . . , 8 with e0 =
0, e1 = −e3 = (1, 0), e2 = −e4 = (0, 1), e5 = −e7 = (1, 1) and e6 = −e8 = (−1, 1).
The equilibrium distribution functions read

f (eq)
i = rωiρ

[
1 + ei · u

cs2
+ 1

2ε

(
ei · u
cs2

)
2 − 1

2ε
u2

c2
s

]
, (B3)

g(eq)
i = rρ′ωi

[
ε + ei · u

c2
s

]
, (B4)

with the unit tensor I and weighting factors ω0 = 4/9, ω1,...,4 = 1/9 and ω5,...,8 = 1/36.
Equations (B3) and (B4) also hold for the fluid region by setting ε = 1. The force terms
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are given by

Fi = δt
(

1 − 1
2τf

)
(ei − u) · α̃

c2
s

f (eq)
i , (B5)

Gi = δt
(

1 − 1
2τg

)
ωiei · β, (B6)

with

α̃z = αz, (B7)

α̃r = αr + c2
s

r

(
1 − (2τf − 1)ur

r

)
, (B8)

where α = (αr, αz) = −(εν/K)u represents the Darcy force in the porous medium that
vanishes in the fluid domain. The additional term β = (βr, βz) = (ρ′, 0) is the same for
both the fluid and porous domains. The non-dimensional relaxation times were defined by
τf = ν/(c2

s δt)+ 1/2 and τg = D/(c2
s δt)+ 1/2, where cs is the speed of sound (assuming

c2
s = 1/3) and δt is the time increment (Succi 2001).
The hydrodynamic variables mass density (ρ), momentum ( j) and density perturbation

(ρ′) were computed by solving

ρ = 1
r

∑
i

fi, (B9)

u =

∑
i

eifi

r2 + τf δtc2
s

r
+ rε

δt
2
ν

K

, (B10)

ρ′ = 1
rε

∑
i

gi. (B11)

A grid refinement technique was applied with a hierarchy of m nested grids with
successively finer resolution approaching the system centre (figure 17a). Each nested grid
consisted of xn = 128n and yn = 257n grid nodes. The resolution of the finest grid was
defined through the amount of grid nodes placed into the particle: δx = 1/(80n). For
the coarser grids, δx and δt were then sequentially scaled by a factor of 2. Values for
n ∈ [1, 2, 3, 4] and m ∈ [4, 6] were selected based on the convergence for the parameter
choice of the model runs. Lower limit of domain size was n = 1 with m = 6 resulting
in a grid width of xn × δx × 2n−1 = 51.2a and a resolution of 0.013a. To ensure the
continuity of pressure, velocity, their derivatives and density at the interface between
coarser and finer grids, the interpolation method of Liu & Khalili (2008, 2009) was used.
The non-local regularised scheme of Liu & Khalili (2008, 2009) was applied to satisfy the
far-field boundary condition (constant velocity W far from the aggregate). In this method,
the macroscopic strain tensor S obtained using a non-local finite-difference scheme was
used to evaluate the regularised distribution functions. For validation purposes, we also
computed the flow around solid spheres satisfying the no-slip condition at the surface,
using a non-equilibrium extrapolation scheme (Guo & Zheng 2002). The criteria for
stationarity are based on both the drag coefficient and the interstitial density contrast.
The model was considered to be converged when changes were less than 10−7 between

931 A9-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

91
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.913


Porous particles settling in stratification

0 2 4 6 8

t (s)

–16

–14

–12

–10

–8

–6

–4

–2

0

z (cm)

0 2 4 6 8

t (s)

–16

–14

–12

–10

–8

–6

–4

–2

0
Solid particle

Solid particle stratification

Equation (4.1)

Experiment

(a) (b)

Figure 16. Time trajectories of the aggregate settling experiments in stratification for the two cases
corresponding to figure 15: (a) Re = 0.66, Fr = 1.37 and (b) Re = 0.1, Fr = 0.88. The black crosses indicate
the location of the aggregate during experiments, while orange represents the direct comparison with the model
(4.1) (see also figure 10). For comparison, the modelled trajectory of a solid sphere of equal initial excess
density settling in the absence of stratification (black curve) and in stratification (dashed line) is depicted.

1000 time steps. Examples are given in figure 17(c–f ) for the lower and upper bounds of
parameters chosen.

Appendix C. Application of derived scaling laws

The scaling laws derived for�ρp ((3.12), (3.13)),�ρδ ((3.3), (3.4)) and CN
D ((3.14), (3.15))

allow for a straightforward implementation of stratification effects into force balance
models and direct calculation of the increase in retention time. The potential applications
are manifold which is the reason for describing the implementation in more detail here.
The balance of buoyancy and drag force is given by

4
3
πa3ρa

dW
dt

= (ρa − ρB)
4
3
πa3g + ρ

2
CS

Dπa2W2, (C1)

where the Basset history force was neglected. The particle density is defined as ρa =
(1 − ε)ρs + ε(ρB +�ρp), with ρs the hydrated excess density of the solids, while the
total excess density is given by

ρa − ρB = (1 − ε)ρs + ε(ρB +�ρp)− ρB (C2)

= (1 − ε)(ρs − ρB)+ ε�ρp. (C3)
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Figure 17. (a) Schematic of the grid set-up. (b) Drag coefficient based on model runs of a homogeneous fluid
for various Re in comparison with White (2005) and Stokes’ law. Examples of the model convergence for (c,e)
a stratified fluid based on the drag coefficient CS

D and (d,f ) the density contrast with respect to an unstratified
fluid �ρp/−aγ (see § 2.2 for further information).
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ν ρ N W Fr Re ReH/Re t/t0 − 1
(m s−2) (kg m−3) (s−1) (m s−1)

5.0 × 10−5 1203.75 0.49 0.0005 0.16 0.07 3.0 2.0
7.2 × 10−5 1212.55 0.50 0.0006 0.17 0.05 2.4 1.4
1.3 × 10−4 1224.50 0.41 0.0007 0.26 0.04 1.8 0.8
1.3 × 10−4 1224.25 0.30 0.0018 0.88 0.10 1.3 0.3
6.4 × 10−5 1209.70 0.37 0.0022 0.85 0.23 1.5 0.5
9.7 × 10−5 1219.00 0.26 0.0032 1.78 0.22 1.1 0.1
3.6 × 10−5 1194.80 0.38 0.0035 1.37 0.66 1.7 0.7
7.5 × 10−5 1213.35 0.15 0.0044 4.41 0.40 1.2 0.2
2.7 × 10−5 1186.50 0.45 0.0054 1.76 1.36 1.4 0.4
4.5 × 10−5 1201.00 0.24 0.0058 3.56 0.88 1.2 0.2
4.4 × 10−5 1200.05 0.21 0.0084 5.81 1.30 1.0 0.02

Table 1. Parameters of the schlieren and settling experiments, where ν is the kinematic viscosity, ρ the mean
density, N the buoyancy frequency and W the settling velocity. Parameter RH is the theoretical Reynolds number
in the absence of stratification. Each of the experiments was performed for 3 to 5 individual particles.

Therefore, in regime R2 the excess density of the particle can be calculated as

ρa − ρB = (1 − ε)�ρs + 39aγ ε(Re + Re0.43Fr0.26) (C4)

and in R3 as

ρa − ρB = (1 − ε)�ρs + 40aγ ε(Re + Re0.45Fr0.06), (C5)

where�ρs = ρs − ρB. For biogeochemical applications, it might be beneficial to calculate
the diffusive exchange using the non-stationary equation (C6) which can be represented
through a simple shell model:

∂ρp

∂t
∼ 3

D
εa2

(
ρp − ρB − αRenFrm)

, (C6)

with α = 39aγ , n = 0.43, m = 0.26 in regime R2 and α = 40aγ , n = 0.45, m ≈ 0 in
R3. We solved the ordinary differential equation in a proof-of-principle application to
estimate the effect of the density boundary layer in buffering the diffusive exchange. It
is important to notice that ρp is assumed to be constant within the entire particle volume
(instantaneous homogenisation). Therefore, the full dynamic and complexity at the surface
is not captured; however, this is a powerful approach for obtaining an order-of-magnitude
approximation. If higher accuracies are desired, the analytical solutions given by (3.11)
and (3.10) may be used.

Appendix D. Settling experiments in linear stratification

To determine settling velocities of aggregates in stratification, we performed experiments
with porous fibre aggregates resembling marine snow (see § 2). In total, 11 different
density stratifications were generated by adjusting glycerol–water mixtures (figure 13a)
yielding buoyancy frequencies ranging from N = 0.15 to 0.50 s−1. Numbers of 3 to 5
aggregates with a radius of r = 6.8 ± 0.2 mm were released into the density-stratified
fluid and the settling velocities were determined (see § 2 and Appendix A). The particle
settling velocity was found to be highly variable spanning almost two orders of magnitude
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ranging from W = 0.5 × 10−3 to 8.4 × 10−3 m s−1. The theoretical settling velocity for a
solid sphere of equal initial excess density settling in the absence of stratification ranges
between W = 1.3 × 10−3 and 8.6 × 10−3 m s−1. The wide range of settling velocities and
buoyancy frequencies resulted in a Reynolds number range Re = 0.04 to 1.36 and a Froude
number range Fr = 0.16 to 5.8 (figure 13b and table 1). The measured Reynolds numbers
for porous particles in stratification are decreased by on average 37 % and for strong
stratification by up to 67 % when compared with theoretical values for a solid sphere with
equal initial excess density settling in a homogeneous fluid ReH .

The time trajectories of the experiments are directly compared with model results ((4.1);
cf figure 16). Overall, the time trajectories of the model and experiments match well even
though some deviations are visible especially at the lower part of the settling chamber
where density gradients became weaker. In both modelling and experimental results, the
retention of the aggregate is strongly enhanced compared to a solid sphere of equal initial
excess density settling in the absence of stratification. For the examples depicted, the
increase in retention time t/t0 − 1 within experiments was 29 % and 66 %, while the model
predicted slightly lower values of 20 % and 26 % (figure 16). The increase in retention time
for experiments with porous particles in stratification ranged between 10 % and 200 %
(table 1).

Appendix E. Extended discussion and comparison with two-layer stratification

Settling of porous particles in two-layer stratification is a topic that has attracted much
attention in recent years. Studies have provided new insights into the retention at sharp
density interfaces and their potential biological implications (e.g. Prairie et al. 2013;
Camassa et al. 2013). Independent of ‘diffusion-limited’ or ‘entrainment’ regime, the
falling of a porous particle through two-layer stratifications is a transient problem, in which
the particle decelerates when approaching the sudden increase of the ambient density
followed by an acceleration due to the equilibration of the interstitial pore water of the
porous particle with the ambient density. In this special case, it is of particular interest
to study the change of the density inside the particle, the length scale of the density
transition between the layers and the time the particle is retarded at the density interface
(Prairie et al. 2013; Panah et al. 2017). In these studies, the buoyancy frequencies were
usually above unity and Reynolds numbers were in an intermediate range 1 < Re < 100
(see figure 12), resembling heavy particles and stratifications that are only found in
some aquatic environments, such as estuaries and salt lakes, which potentially limit the
application range. By contrast, in typical oceanic conditions the changes in stratification
exceed diffusive relaxation times and associated length scales of marine aggregates.
Under these conditions and while settling, the changes of density in the external field
are equivalent to the changes of density in the density boundary layer and interstitial pore
water leading to a stationarity of the settling velocity (W = const.). Centred around this
stationarity, we rationalised the diffusive exchange processes in scaling laws which allow
for an implementation in larger modelling frameworks such as Earth system models or
regional biogeochemical models.

We tested whether the results of Panah et al. (2017) can also be extrapolated to the
case of weaker linear stratifications and lighter particles when assuming that the two-layer
stratification changes over a distance of 100 particle radii (potentially similar to linear
stratification). For that, we parameterised the individual retention time scalings from Panah
et al. (2017) based on the thickness of the two-layer stratification transition zone (γ = 100;
Panah et al. (2017), their (20)), the Péclet number (Panah et al. (2017), their (21)), the
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Figure 18. Deviation between the results of Panah et al. (2017) and those of our study. (a) The retention
increase log(t/t0 − 1) of a relatively heavy particle (ρs = 100 kg m−3). (b) The retention increase of a light
particle (ρs = 10 kg m−3). The contour lines are log(t/t0 − 1) based on Panah et al. (2017) (their (20), (21),
(23), (24)) and the colours indicate the relative deviation from results of our study. Red colour implies that
the model of Panah et al. (2017) predicts a higher retention time compared with ours, blue indicates that our
retention time estimates are higher and white implies matching results.

stratification parameter (Panah et al. (2017), their (23)) and the Reynolds number (Panah
et al. (2017), their (24)) and subsequently summed the individual effects to get the overall
increase in retention time. When comparing these results with the outcomes of our scaling
laws (figure 18), we found substantial deviations spanning up to four orders of magnitude.
The deviations reduce for stronger stratifications and larger particles, i.e. the parameter
range that was studied by Panah et al. (2017). Thus, we conclude that the applicability of
their model is somewhat limited when it comes to linear stratification, i.e. it is restricted
to stronger stratification N > 1 s−1.

Appendix F. Permeability effects

We tested variations of the Darcy number (at Re = 1 and Fr = 1) to investigate if there
is a potential effect on the derived scaling laws (cf. figure 14). We observed that a Darcy
number of Da = 10−5 is required for the permeability of the particle to substantially affect
the particle density contrast as well as the drag coefficient. At this Da the effects of the
stratification on drag are diminishing. In a dedicated study, Dörgens et al. (2015) found the
permeabilities of the laboratory fibre aggregates to range between k = 10−11 and 10−12 m
resulting in Da ≈ 10−6 (see figure 14, grey bar). This implies that the experiments with
the laboratory particles are only slightly influenced by permeability effects (<5 % for the
drag coefficient).
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