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Ephemeral aggregations of bacteria are ubiquitous in the environ-
ment, where they serve as hotbeds of metabolic activity, nutri-
ent cycling, and horizontal gene transfer. In many cases, these
regions of high bacterial concentration are thought to form when
motile cells use chemotaxis to navigate to chemical hotspots.
However, what governs the dynamics of bacterial aggregations is
unclear. Here, we use an experimental platform to create realistic
submillimeter-scale nutrient pulses with controlled nutrient con-
centrations. By combining experiments, mathematical theory, and
agent-based simulations, we show that individual Vibrio ordalii
bacteria begin chemotaxis toward hotspots of dissolved organic
matter (DOM) when the magnitude of the chemical gradient rises
sufficiently far above the sensory noise that is generated by
stochastic encounters with chemoattractant molecules. Each DOM
hotspot is surrounded by a dynamic ring of chemotaxing cells,
which congregate in regions of high DOM concentration before dis-
persing as DOM diffuses and gradients become too noisy for cells
to respond to. We demonstrate that V. ordalii operates close to
the theoretical limits on chemotactic precision. Numerical simula-
tions of chemotactic bacteria, in which molecule counting noise is
explicitly taken into account, point at a tradeoff between nutrient
acquisition and the cost of chemotactic precision. More generally,
our results illustrate how limits on sensory precision can be used
to understand the location, spatial extent, and lifespan of bacterial
behavioral responses in ecologically relevant environments.

chemotaxis | motility | sensing noise | microbial ecology | ocean

Motile bacteria often survive by consuming ephemeral
sources of dissolved organic matter (DOM) produced, for

example, in the ocean by phytoplankton lysis and exudation or
sloppy feeding and excretion by larger organisms (1–4). The
microscale interactions between nutrient sources and bacteria
underpin ocean biogeochemistry and are strongly influenced by
the ability of bacteria to actively navigate toward favorable condi-
tions. Past experiments on chemotaxis using Escherichia coli and
other model bacteria have generally focused on stable gradients
of intermediate to high nutrient concentrations, where bacte-
ria can readily detect chemical gradients (5–7). However, the
environments that wild bacteria navigate are often characterized
by short-lived, microscale chemical gradients where background
conditions are highly dilute (8, 9). In such ephemeral chemical
fields, bacteria experience a gradient in DOM concentration as
a noisy, dynamic signal, rather than as a steady concentration
ramp (10).

Chemotactic bacteria rely on temporal gradient sensing to bias
their swimming behavior according to whether their measure-
ment of a chemical concentration is rising or falling over time.
Such measurements are accomplished by using sophisticated
receptors on their surface, combined with intracellular transduc-
tion pathways (11). This process fundamentally involves inter-
action with discrete chemoattractant molecules (12): Intrinsic
randomness in the encounter rate affects a cell’s measurement

of the gradient. This randomness places fundamental constraints
on the cell’s ability to resolve gradients.

Theoretically, the relationship between the magnitude of a
gradient signal and the noise associated with a cell’s mea-
surement of that signal—the signal-to-noise ratio (SNR)—
determines when and where cells can perform chemotaxis.
Recent theoretical work has explored the physical limits on
the accuracy and precision of cellular gradient sensing (13, 14),
expanding on the seminal work of Berg and Purcell (12).

In natural environments, gradients are often noisy, in part due
to low concentrations and local fluctuations, and can change
over timescales comparable to the chemotactic response (15–
17). Understanding what governs chemotaxis and aggregation of
bacteria in these noisy, ephemeral environments requires cou-
pling an experimental method for precisely quantifying bacterial
responses to microscale nutrient pulses, with a theoretical frame-
work that specifically incorporates sensory noise. This has so far
remained elusive.

Quantifying Chemotaxis in Realistic Microenvironments
To create controlled, dynamic nutrient pulses that mimic those
that bacteria interact with in the ocean, we developed a system
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Fig. 1. Bacteria are able to perform chemotaxis in the presence of
molecule counting noise. (A) Localized chemoattractant becomes available
at the center of the chamber through photorelease of caged glutamate
(orange), which subsequently diffuses and attracts chemotactic bacteria
(blue). (B) Bacterial trajectories are extracted across the domain, reveal-
ing runs (white), reversals (red), and flicks (green). (C) The discrete nature
of glutamate encounters introduces noise into the bacterium’s gradient
measurement on top of other sources of noise. (D) Contours showing the
instantaneous rate of encounter with glutamate molecules experienced by
bacteria (shown at t = 20 s). (E) Despite the noise, the cells exhibit strong
accumulation with bacterial cell concentration, B/B0, reaching a high value
over the background a few tens of seconds following the pulse release. Posi-
tions of individual bacteria have been binned into 75-µm× 75-µm grids and
averaged over 8- to 10-s intervals.

to introduce and make almost instantly available to the bacteria
an amino acid source with known concentration into a chemi-
cally dilute background within a microfluidic chamber (18) (SI
Appendix). Before the experiment, the chamber was filled with
a known concentration of 4-methoxy-7-nitroindolinyl-caged-L-
glutamate, a “caged” version of the amino acid glutamate—a
potent chemoattractant and one of the most abundant dissolved
amino acids in coastal waters (19). When bound to the cage, glu-
tamate was undetectable by the bacteria. By exposing the center
of the chamber to a focused LED pulse, a controlled quantity
of glutamate was photoreleased (20, 21) in a vertical column
(Fig. 1A). The amount of glutamate can be controlled to match
the amino acids released from a lysing phytoplankton cell (2). In
the experiments, this was varied in the range 0.0088–0.22 pmol,
where the number of molecules released in the pulse can be
determined by a calibration relationship between exposure time
and uncaging fraction (Fig. 3 and SI Appendix, Fig. S4). The
subsequent diffusion of this axisymmetric cylindrical pulse (diffu-
sivity DC = 608 µm2·s−1) is well-approximated by a point source
spreading with a Gaussian profile C (r , t) (SI Appendix, Fig. S5).
The instantaneous rate at which bacteria of radius a encounter
glutamate molecules is R = 4πaDCNAC (r , t), where NA is the
Avogadro constant. At t = 20 s after pulse release, a consid-
erable number of bacteria in the domain encounter just a few
molecules per second (Fig. 1D), highlighting the importance of
considering the discrete nature of the chemoattractant.

To measure how cells respond to this rarefied chemical pulse
(Fig. 1D), we recorded>1 million bacterial trajectories (Fig. 1B)
over 20 min starting at pulse release for three replicate pulses.
This allowed us to measure motion at the single-cell level and to

quantify chemotactic behavior at the population level. For each
track (Fig. 2A), we quantified the angle, θ, between the cell’s
instantaneous swimming velocity and the vector pointing from
the cell position to the center of the pulse (Fig. 2C). At t = 20
s after pulse release, there was a strong inward bias (0<E [θ]<
π/2) for bacteria in the region r ∈ [300 µm, 400 µm], whereas
at either larger radii or later times (t > 300 s), the swimming
was isotropic (Fig. 2D). Fig. 2E shows spatial snapshots of the
average radial velocity vdrift = 〈−v cos θ〉 at various times after
the pulse release. An annular region of biased bacterial motion
with vdrift < 0 expanded around the pulse center and eventually
disappeared. The chemotactic response of the bacteria gave rise
to the transient accumulation of cells near the center, with con-
centrations up to four times higher than the background bacterial
concentration B0 within 1 min of pulse release (Fig. 1E). In what
follows, we show that the region of chemotaxis and the rate at
which cells move toward the pulse depend not only on the glu-
tamate gradient, but also on the noise associated with cellular
measurements of that gradient.

Measurement Noise and Bacterial Chemotaxis
Small motile cells in the size range of E. coli, sperm cells (22),
many Vibrios, and other bacteria cope with high levels of noise
when estimating the concentrations and gradients of chemicals
(14, 16). Over some short time interval (t0, t0 +T ), the true
local concentration at the cell’s position, x, is (SI Appendix)
c(t)≈ c0 + c1(t − t0) = c0 + [∂c/∂t + v ·∇c](t − t0), where v =
ẋ. Mora and Wingreen (14) showed that there is a bound on
the precision with which a cell can estimate the gradient com-
ponent of this local concentration. A cell that seeks to estimate
the concentration gradient over a time interval T is limited by
the following performance bound:

σĉ1 ≥σ
min, where σmin =

[
3c0

πaDCT 3

]1/2
, [1]

and σĉ1 is the standard deviation (SD) of the cell’s estimate of
the gradient, DC is the diffusivity of the chemical compound, a
is the radius of the bacterial cell, and c0 is the local average con-
centration of the compound (14, 16). The limit defined by Eq. 1
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Fig. 2. Bacterial drift is confined to discrete regions in space and time
where the SNR is sufficiently high. (A) Single-cell trajectories in the first 60 s
following pulse release. (B) Schematic of the mean glutamate concentration
as a function of the distance from the center of a pulse. Far from and near
to the pulse center, the SNR is low. At an intermediate distance, concentra-
tion gradients are strong, and the gradient signal can emerge above noise.
(C) The swimming velocity of each bacterium makes an angle θ relative to
the radial vector toward the pulse center. (D) Probability distribution, p(θ),
of the swimming angle θ within the region r ∈ [300 µm, 400 µm]. The dot-
ted lines correspond to isotropic distributions (random swimming direction).
A strong inward bias, E[θ]<π/2, is observed at t = 20 s. (E) Instantaneous
radial drift velocity, vdrift, at various times following the pulse release.
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assumes that the only source of uncertainty in the cell’s gradi-
ent estimate is molecule counting noise, introduced by stochastic
encounters between the cell and chemoattractant molecules (14,
16). Eq. 1 is derived by idealizing a bacterium as a perfectly
absorbing sphere (12) and does not require assumptions about
the species’ biology or behavior.

Eq. 1 illustrates that the uncertainty in the gradient measure-
ment depends on the local chemical concentration, c0. There-
fore, the ability of a bacterium to accurately estimate and climb
the gradient in our experiment depends strongly on where the
cell is located (Fig. 2B). As an example, shortly after pulse
release, a cell ∼1 mm from the pulse center in the dilute
conditions of our experiment would experience fluctuations in
molecular encounters which preclude measurement of the chem-
ical gradient within this timescale. Likewise, near the center of
the pulse, the gradient is weak (Fig. 2B), and the measurement
noise will dominate the gradient signal (16). The ring-shaped
region where the gradient is high and noise is moderate (Fig. 2B)
suggests that the relationship between gradient signal and sen-
sory noise is responsible for the annular region of chemotaxis
observed in our experiment (Fig. 2E). We explored this hypoth-
esis using a computational model of chemotaxis that includes
measurement noise.

Linking Measurement Noise and Chemotactic Performance
To determine whether and how measurement noise affected the
chemotactic response of bacteria in our experiments, we devel-
oped a simplified model of the Vibrio chemotaxis response that
incorporated the essential features of bacterial navigation. Many
details of the chemotaxis pathway that are known for E. coli
(23–25) are not known for Vibrio ordalii, nor are such details
known for most nonmodel bacteria. We therefore modeled
Vibrio chemotaxis using a minimal model inspired by Long et al.
(26) to combine the physical theory of Eq. 1 with the essential
features of gradient measurement, adaptation, and motor out-
put. For each bacterium, we model an internal state variable,
S(t), which evolves according to (SI Appendix):

Ṡ(t) =− S

tM
+κM(x, v, t), [2]

where S = 0 is the adapted state, tM is the adaptation timescale
associated with methylation dynamics [∼1.3 s in Vibrio (27)],
κ is the receptor gain rescaled by the half-saturation constant,
and M(x, v, t) is the (noisy) concentration gradient perceived
by the cell, which is subject to the bounds of Eq. 1. Within
each time interval of duration T , we model the gradient esti-
mate as a normally distributed random variable, M(x, v, t) =
N (µ,σ2), with mean µ= (∂/∂t + v ·∇)C (x, t) and SD σ= Π×
σmin = Π

[
3 C (x, t)/πaDCT 3

]
1/2. Here, we have assumed that

the SD of the cell’s estimate of the true ramp rate is pro-
portional to the theoretical bound given in Eq. 1 with a pro-
portionality constant equal to Π≥ 1. We will refer to Π as
a “precision factor” because it expresses how precise a cell’s
estimate of the gradient is relative to the theoretical bound.
Π = 1 means the cell has reached the bound, Π = 10 means
the cell is 10 times less precise than the bound, and so forth.
This formulation assumes that noise in the dynamics of the
internal variable can be captured as a multiple of the lower
bound on noise in the gradient measurement itself. This can
be interpreted as additional gradient measurement noise above
the limit set by Eq. 1 [e.g., as a result of suboptimal measure-
ment or transduction (14)] or as noise introduced later in the
transduction pathway. We do not attempt to distinguish these
possibilities.

Eq. 2 involves two distinct timescales: the adaptation timescale
tM and the gradient estimate timescale T . While T has not been
directly measured, it is bounded by measurable features of the

chemotaxis response. First, it cannot be shorter than the typi-
cal phosphorylation timescale, since transduction of the receptor
binding kinetics is a necessary precursor to processing and inte-
grating this information. This sets a lower bound of T ∼ 100 ms
(24, 28). Second, T must be less than the run time, τ , of the cell
if the cell is to consistently respond to a spatial gradient (12).
Our data indicate a sharp cutoff to the distribution of run times
at 120 ms (SI Appendix, Fig. S3C). This suggests that T is of the
order 0.1 s, and we will assume this value in our model.

V. ordalii exhibits run–reverse–flick locomotion (Fig. 1B). We
simulated its chemotactic behavior by modeling transitions from
run to reverse and from reverse to flick, assuming the asso-
ciated switching rates to be governed by a nonhomogeneous
Poisson process with rate λ(S) (ref. 26 and SI Appendix). This
formulation allows the cell to modulate its mean run time,
τ(S) = 2τ0/(1 + exp(−ΓS)), from the unbiased value τ0 (exper-
imentally determined with no chemical gradient), where Γ is a
dimensionless motor gain.

Predicting Chemotactic Performance of a Population
Using the above model of chemotaxis, we performed 3D agent-
based simulations of populations of bacteria foraging in the
dynamic nutrient landscape studied in our experiments. Cells
were subject to rotational diffusion and executed run–reverse–
flick motion (Fig. 1 B, Inset) with reorientation angles drawn
from distributions for a closely related Vibrio species (29) (SI
Appendix). The agent-based model was compared with experi-
mental data by fitting the precision factor Π, the motor gain Γ,
and the rescaled receptor gain κ to data on the radial drift veloc-
ity of bacteria from our experiment (SI Appendix). The results
depend more strongly on the precision factor than on either of
the gains (SI Appendix, Fig. S6). The spatiotemporal evolution
of the drift velocity from our experiments (Fig. 3A) was cap-
tured by the computational model (Fig. 3B), with the formation
of an expanding—and eventually disappearing—annular region
of chemotaxing cells. Outside this dynamic annulus, the shallow
gradients are masked by noise (Fig. 2B) and bacterial motion is
unbiased. These results involving drift velocity are not to be con-
fused with the previously reported “volcano effect” in bacterial
density (30).

The agreement between model and data was good across
nutrient pulses of different intensities. We performed additional
experiments in which we decreased the concentration of uncaged
glutamate in the pulse by a factor of 5 and a factor of 25
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(corresponding to C0 = 7µM and C0 = 1.4µM, respectively).
The model accurately predicts how chemotaxis varies with pulse
size (Fig. 3B). A single value of the precision factor, Π = 6.6, cap-
tures the drift velocity profile across all pulse sizes with mean
fitting error ∼1% of the swimming speed.

The observed value of Π = 6.6 is relatively close to the theo-
retical bound of Π = 1 and is within the same order of magnitude
of rough estimates of the chemotactic precision of E. coli (12,
31). This is remarkable, particularly when one considers that
bacterial behavior is influenced not only by molecule count-
ing noise, but also by internal sources of noise associated with
the signaling network (32, 33), receptor readout copies (34),
and other cellular functions (e.g., running a flagellar motor)
(31). Similar values of precision were estimated when nutrient
consumption was included (Π = 4.2), adaptation was neglected
(Π = 8.4), or both (Π = 4.4) (SI Appendix, Fig. S8), highlight-
ing the robustness of the finding that V. ordalii appears to
perform close to the theoretical limit imposed by gradient
measurement.

It will be important in future studies of the chemotaxis net-
work to determine precisely the biochemical processes that set
T . However, based on the timescale set by the phosphorylation
and dephosphorylation cycle of CheY in E. coli (34), we expect
the value of T to be very close to 0.1 s. Although the estimated
value of the precision factor, Π, depends on the value of T ,
the dependence is not as strong as it might appear from Eq. 1.
For example, setting T = 0.05 s or T = 0.2 s and reestimating
Π from the simulations results in values of Π = 3 and Π = 13,
respectively. This weaker dependence of Π on T is due to partial
compensation by the fitted gain term.

Continuum Theory
In addition to the computational model described, we developed
a simplified continuum model to predict the chemotactic drift
velocity, which incorporated gradient signal and measurement
noise over a single run–reverse cycle (SI Appendix). Consider
a cell that makes a run with speed v up a (locally) linear gra-
dient, then reverses its direction. The durations of the forward
and backward runs are determined by the cell’s measurement of
the gradient, rather than the gradient’s true value. The values of
the discrete gradient measurements, ĉ1,i , sampled over a time
T , are assumed to be normally distributed with mean (∂/∂t +

v ·∇)C (x, t) and SD σ= Π×σmin (Eq. 1). In the absence of
adaptation, this formulation allows one to calculate the expected
length of a bacterial run, composed of multiple independent
gradient measurements, ĉ1,i (SI Appendix, Eq. S21). From this,
the drift velocity can be written as an infinite series involv-
ing the mean reversal rate for cells (SI Appendix, Eq. S22).
The simplified model successfully predicts the spatiotemporal
response of bacteria in experiments (Fig. 3C) and could there-
fore be embedded in advection–diffusion models for chemotaxis
(17, 35).

Chemotactic Precision Governs Nutrient Uptake
To investigate the influence of measurement noise on the nutri-
ent exposure across the bacterial population, we used the com-
putational model to analyze the uptake dynamics for different
values of Π. In doing so, we identified ecological tradeoffs that
may give rise to the specific precision factor, Π, exhibited by
V. ordalii. We characterized the potential uptake for each bac-
terium with position xi(t), as the time-dependent concentration
of glutamate to which it was exposed, Ui(t) =C (xi(t), t). We
note that the population-average value of U will, in general,
depend on the size of the domain. However, as 1.5 mm is beyond
the maximum radius for which cells can detect the gradient
(Figs. 2 and 3), we fixed this value throughout the simulations.
Fig. 4 A–C illustrates the simulated trajectories of bacteria for
three different values of Π. The circular shaded regions (blue)

represent a measured drift velocity of |vdrift|> 1µm/s over the
first 60 s after pulse release. The outer radii of these zones for
Π = 1 and Π = 6.6 are comparable. Movies S1–S3 show the full
response of cells in Fig. 4 A–C.

Fig. 4D demonstrates that the time-dependent population-
averaged uptake, U , depends strongly on the chemotactic pre-
cision factor, Π. Within∼100 s following pulse release, the value
of U peaks and then slowly declines. When considering the time-
averaged potential uptake (over 300 s) as a function of Π, for
different quintiles of the bacterial population, we find that the
nutrient exposure for cells in the top 20% (in terms of the time-
averaged potential uptake) is unaffected by changes in Π, for
Π. 6 (Fig. 4E). Conversely, the middle to lower quintiles ben-
efit most from changes in Π, exhibiting a substantial increases in
U from Π = 100 to Π = 1.

Bacteria with a precision factor on the order of that observed
experimentally (Π = 6.6) attain a nutrient uptake which is com-
mensurate with the theoretical maximum (Fig. 4F). A cell’s
potential uptake, U , depends strongly on its initial position, and
Fig. 4F shows the time-averaged uptake as a function of initial
radial distance, rinit, from the pulse center. The results are inde-
pendent of Π for cells that are either very close to or very far
from the pulse. Beyond rinit ∼ 1,500 µm, all curves go to zero, and
this radius therefore represents the extent of the phycosphere
for this pulse size (9, 16, 36). The confidence intervals corre-
sponding to Π = 1 and Π = 6.6 overlap, indicating that potential
uptake values are similar for cells with the theoretical optimal
precision and cells with the level of precision determined from
experimental data.

It is instructive to consider the relative advantage attained
by chemotactic cells compared with nonchemotactic “mutants,”
which represent the limiting case where no gradients are
detectable. The number of moles of glutamate released in the
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bacteria followed for 60 s are shown (Movies S1–S3). The shaded circular
zones (blue) represent a measured drift velocity |vdrift|> 1 µm/s over the
first 60 s. (Scale bar: 500 µm.) (D) Nutrient exposure U as a function of time,
averaged across the population. Results are shown for three different pre-
cision factors, Π, corresponding to those in A–C. (E) Time-averaged nutrient
exposure as a function of chemotactic precision for different quintiles of
the bacterial population. (F) Mean nutrient exposure (over 300 s) plotted in
terms of the initial distance of bacteria from the pulse. Shaded regions show
SE. D–F correspond to C0 = 35 µM. (G) Enhancement in potential uptake
compared with nonchemotactic cells as a function of pulse size.
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Fig. 5. Time-dependent bacterial response to photoreleased nutrients of
initial concentration C0 = 35 µM (mass 0.22 pmol). (A and B) Theoretically
predicted radial velocity profiles at various times, obtained by using SI
Appendix, Eq. S22. (C) Experimental snapshots of bacterial concentration
at t = 10, 30, 60 s after creation of a diffusing nutrient pulse. Conser-
vation of bacteria dictates that beyond the aggregation (B> B0) exists a
depletion zone, where B< B0. (D) The bacterial concentration takes approx-
imately 20 min to relax to B(r, t)≈ B0. D, Inset shows that B(r, t) for t & 300
s is well captured by diffusive spreading alone with a diffusion coefficient
DB = 165 µm2·s−1.

pulse is given by n =πr2hC0, where r = 100µm and h = 200µm
are the radius and height of the columnar release, respectively.
It is equivalent to study pulse size in terms of C0 or n (hori-
zontal axes of Fig. 4G). The relative enhancement of the time-
and population-averaged potential uptake due to chemotaxis
depends strongly on initial glutamate pulse concentration C0

(Fig. 4G). Even for the smallest pulse size studied experimentally
(C0 = 1.4µM), cells with Π = 6.6 exhibit a∼20% advantage over
nonchemotactic cells. This advantage grows with C0, as more of
the chemotactic cells are able to exploit the dynamic hotspot.
For C0 = 35µM, cells with Π = 6.6 exhibit an 89% increase in
potential uptake over nonchemotactic cells.

DOM Hotspots as Ecological Units
These results allow us to quantify the spatial extent and lifes-
pan of bacterial aggregations in realistic environments. One
example is phycospheres in the ocean, the regions surround-
ing individual phytoplankton cells that are rich in DOM (9, 36).
The continuum theory predicts a short period of active bacterial
recruitment via chemotaxis (Fig. 5A), followed by many min-
utes of random motility-induced motion with vdrift≈ 0 (Fig. 5B).
These predictions are consistent with the azimuthally averaged
bacterial concentration from experiments (Fig. 5 C and D). The
peak value in bacterial concentration occurs in the center of the
glutamate pulse at t ≈ 60 s (Fig. 5C). The relaxation back to a
spatially uniform distribution is well described by a diffusive pro-
cess, with an estimated diffusion coefficient of the bacteria of
DB = 165µm2·s−1 (Fig. 5 D, Inset). The lifetime of the bacte-
rial accumulation is almost an order of magnitude greater than
the duration of chemotaxis, indicating the long-term legacy of
short-term initial recruitment. Processes such as collective nutri-
ent cycling (9, 37), horizontal gene transfer (38), and infection
by pathogens (39), which depend on local bacterial concentra-
tion, may therefore be influenced well beyond the time when
chemotaxis ceases.

Discussion and Conclusions
Bacteria in the ocean encounter nutrient pulses from a range
of sources. Our experimental system is designed to mimic a
range of unsteady nutrient sources, such as the diffusive spread-
ing of a plume behind a sedimenting particle (40), a nutrient

filament produced by turbulent mixing (17), or the spread-
ing source from a lysing phytoplankton cell (9, 41). Through
experiment, theory, and numerical simulations, we have shown
that the chemotactic motion of cells toward an unsteady nutri-
ent source can only occur in discrete zones where the gradi-
ent signal is not obscured by noise. Importantly, our results
demonstrate that there is a clear and predictable delineation
between zones where chemotaxis can occur and those where
it cannot.

For many real nutrient sources, the stochasticity in the
chemoattractant is essential in understanding the chemotactic
footprint. However, in many existing models for chemotaxis,
it is assumed that cells are able to perfectly measure changes
in their surrounding chemical concentration. This determinis-
tic sensing is equivalent to setting Π = 0 in our model and
assumes that variations in the gradient estimate are negligible.
The fit of simulations performed in the absence of noise (i.e.,
Π = 0) to drift velocity data has a mean fitting error 10 times
that of the model with Π = 6.6 (error 5.2µm/s compared with
0.51µm/s). However, the importance of noise will diminish at
higher chemoattractant gradients. As the initial concentration
of glutamate in the patch, C0, is increased, the maximum sig-
nal bacteria experience, max(∂C/∂t + v ·∇C ), increases pro-
portionally with C0, while the uncertainty in the measure-
ment scales sublinearly, σC ∼

√
C0 (Eq. 1). This could explain

why models with deterministic sensing (6, 42) are capable of
matching experiments performed with steep gradients at higher
concentrations.

Is it surprising that V. ordalii operates so close to the limit
of sensory precision? On one hand, it is intuitive that more
precise sensing should facilitate better responses to the envi-
ronment, and so natural selection should lead to bacteria capa-
ble of making precise measurements of the gradient. There is
only a marginal difference between the nutrient exposure for
cells with the sensory precision of V. ordalii, compared with
cells with the theoretical optimum sensory precision (Fig. 4).
However, sensory precision comes at a high cost (43). Sup-
pressing internal noise in biochemical networks, for example,
generally requires that a cell produce and maintain a greatly
increased number of signaling molecules (34, 44), implying that
cells must trade off the costs and benefits of noise suppres-
sion. Two potential ways for a cell to increase its chemotaxis
performance are (i) by increasing swimming speed (16), which
comes at the cost of devoting more energy to locomotion (45);
and (ii) by increasing its chemotactic precision (i.e., decreasing
Π), which comes at the cost of tighter regulation of noise in
the signal transduction pathway (34, 44). Although we cannot
here quantify the costs of noise suppression in the chemo-
taxis pathway, the plateaus in Fig. 4E for Π. 6 hint toward
an optimal value of precision, beyond which the additional
resource gain may not outweigh the cost required to suppress
internal noise.

We note that noise in the chemotaxis pathway, however, does
not always degrade the ability of cells to climb gradients. In
contrast with our result on the negative effect of (upstream)
counting noise on chemotactic performance, recent studies with
E. coli (46–48) demonstrated that (downstream) signaling noise
plays an important role in coordinating multiple motors (49)
and can increase chemotactic sensitivity. Rigorous calculations
in such model species where the chemotaxis pathway is better
established may help shed light on the importance of correla-
tions in measurement noise, out-of-equilibrium dynamics, and
simultaneous contribution of multiple noise sources.

We have shown that sensory noise places fundamental con-
straints on the chemotactic abilities of cells and governs the
density, spatial extent, and lifespan of bacterial aggregations.
The timescale for initial recruitment through chemotaxis (tens
of seconds) is much shorter than the lifetime of the bacterial
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aggregation (tens of minutes). This further highlights the eco-
logical significance of chemotactic navigation during the initial
seconds following the occurrence of a pulse, and therefore the
crucial role of noise suppression.

From a modeling perspective, the ability to partition com-
plex nutrient landscapes into discrete zones of active chemotaxis
will facilitate the conceptual scaling up from single hotspots to
larger domains of an ecosystem, such as the intricate turbulence-
induced network of DOM in the ocean. Beyond marine bacteria,
the approach of studying chemotactic zones with respect to the
underlying gradient SNR is expected to find great utility in
assessing the performance of other microbes, which have evolved
in chemical microenvironments with fundamentally different
spatiotemporal properties.

Materials and Methods
A detailed discussion of the experimental protocols, mathematical theory,
and numerical simulations is included in the SI Appendix.
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